Do you want to publish a course? Click here

The Nancy Grace Roman Space Telescope Coronagraph Instrument (CGI) Technology Demonstration

161   0   0.0 ( 0 )
 Added by N. Jeremy Kasdin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Coronagraph Instrument (CGI) on the Nancy Grace Roman Space Telescope will demonstrate the high-contrast technology necessary for visible-light exoplanet imaging and spectroscopy from space via direct imaging of Jupiter-size planets and debris disks. This in-space experience is a critical step toward future, larger missions targeted at direct imaging of Earth-like planets in the habitable zones of nearby stars. This paper presents an overview of the current instrument design and requirements, highlighting the critical hardware, algorithms, and operations being demonstrated. We also describe several exoplanet and circumstellar disk science cases enabled by these capabilities. A competitively selected Community Participation Program team will be an integral part of the technology demonstration and could perform additional CGI observations beyond the initial tech demo if the instrument performance warrants it.



rate research

Read More

273 - B. Mennesson 2020
This document summarizes how far the Nancy Grace Roman Space Telescope Coronagraph Instrument (Roman CGI) will go toward demonstrating high-contrast imaging and spectroscopic requirements for potential future exoplanet direct imaging missions, illustrated by the HabEx and LUVOIR concepts. The assessment is made for two levels of assumed CGI performance: (i) current best estimate (CBE) as of August 2020, based on laboratory results and realistic end-to-end simulations with JPL-standard Model Uncertainty Factors (MUFs); (ii) CGI design specifications inherited from Phase B requirements. We find that the predicted performance (CBE) of many CGI subsystems compares favorably with the needs of future missions, despite providing more modest point source detection limits than future missions. This is essentially due to the challenging pupil of the Roman Space Telescope; this pupil pushes the coronagraph masks sensitivities to misalignments to be commensurate with future missions. In particular, CGI will demonstrate active low-order wavefront control and photon counting capabilities at levels of performance either higher than, or comparable to, the needs of future missions.
Over the past two decades, thousands of confirmed exoplanets have been detected; the next major challenge is to characterize these other worlds and their stellar systems. Much information on the composition and formation of exoplanets and circumstellar debris disks can only be achieved via direct imaging. Direct imaging is challenging because of the small angular separations ($<1$ arcsec) and high star-to-planet flux ratios (${sim}10^{9}$ for a Jupiter analog or ${sim}10^{10}$ for an Earth analog in the visible). Atmospheric turbulence prohibits reaching such high flux ratios on the ground, so observations must be made above the Earths atmosphere. The Nancy Grace Roman Space Telescope (Roman), set to launch in the mid-2020s, will be the first space-based observatory to demonstrate high-contrast imaging with active wavefront control using its Coronagraph Instrument. The instruments main purpose is to mature the various technologies needed for a future flagship mission to image and characterize Earth-like exoplanets. These technologies include two high-actuator-count deformable mirrors, photon-counting detectors, two complementary wavefront sensing and control loops, and two different coronagraph types. In this paper, we describe the complete set of flight coronagraph mask designs and their intended combinations in the Roman Coronagraph Instrument. There are three types of mask configurations included: a primary one designed to meet the instruments top-level requirement, three that are supported on a best-effort basis, and several unsupported ones contributed by the NASA Exoplanet Exploration Program. The unsupported mask configurations could be commissioned and used if the instrument is approved for operations after its initial technology demonstration phase.
The Nancy Grace Roman Space Telescope (Roman) is an observatory for both wide-field observations and coronagraphy that is scheduled for launch in the mid 2020s. Part of the planned survey is a deep, cadenced field or fields that enable cosmological measurements with type Ia supernovae (SNe Ia). With a pixel scale of 0.11, the Wide Field Instrument will be undersampled, presenting a difficulty for precisely subtracting the galaxy light underneath the SNe. We use simulated data to validate the ability of a forward-model code (such codes are frequently also called scene-modeling codes) to perform precision supernova photometry for the Nancy Grace Roman Space Telescope SN survey. Our simulation includes over 760,000 image cutouts around SNe Ia or host galaxies (~ 10% of a full-scale survey). To have a realistic 2D distribution of underlying galaxy light, we use the VELA simulated high-resolution images of galaxies. We run each set of cutouts through our forward-modeling code which automatically measures time-dependent SN fluxes. Given our assumed inputs of a perfect model of the instrument PSFs and calibration, we find biases at the millimagnitude level from this method in four red filters (Y106, J129, H158, and F184), easily meeting the 0.5% Roman inter-filter calibration requirement for a cutting-edge measurement of cosmological parameters using SNe Ia. Simulated data in the bluer Z087 filter shows larger ~ 2--3 millimagnitude biases, also meeting this requirement, but with more room for improvement. Our forward-model code has been released on Zenodo.
The Nancy Grace Roman Space Telescope (Roman) will perform a Galactic Exoplanet Survey (RGES) to discover bound exoplanets with semi-major axes greater than 1 au using gravitational microlensing. Roman will even be sensitive to planetary mass objects that are not gravitationally bound to any host star. Such free-floating planetary mass objects (FFPs) will be detected as isolated microlensing events with timescales shorter than a few days. A measurement of the abundance and mass function of FFPs is a powerful diagnostic of the formation and evolution of planetary systems, as well as the physics of the formation of isolated objects via direct collapse. We show that Roman will be sensitive to FFP lenses that have masses from that of Mars ($0.1 M_oplus$) to gas giants ($Mgtrsim100M_oplus$) as isolated lensing events with timescales from a few hours to several tens of days, respectively. We investigate the impact of the detection criteria on the survey, especially in the presence of finite-source effects for low-mass lenses. The number of detections will depend on the abundance of such FFPs as a function of mass, which is at present poorly constrained. Assuming that FFPs follow the fiducial mass function of cold, bound planets adapted from Cassan et al. (2012), we estimate that Roman will detect $sim250$ FFPs with masses down to that of Mars (including $sim 60$ with masses $le M_oplus$). We also predict that Roman will improve the upper limits on FFP populations by at least an order of magnitude compared to currently-existing constraints.
147 - B. M. Rose , G. Aldering , M. Dai 2021
We review the needs of the supernova community for improvements in survey coordination and data sharing that would significantly boost the constraints on dark energy using samples of Type Ia supernovae from the Vera C. Rubin Observatories, the textit{Nancy Grace Roman Space Telescope}, and the textit{Euclid} Mission. We discuss improvements to both statistical and systematic precision that the combination of observations from these experiments will enable. For example, coordination will result in improved photometric calibration, redshift measurements, as well as supernova distances. We also discuss what teams and plans should be put in place now to start preparing for these combined data sets. Specifically, we request coordinated efforts in field selection and survey operations, photometric calibration, spectroscopic follow-up, pixel-level processing, and computing. These efforts will benefit not only experiments with Type Ia supernovae, but all time-domain studies, and cosmology with multi-messenger astrophysics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا