Do you want to publish a course? Click here

Semantics-Native Communication with Contextual Reasoning

65   0   0.0 ( 0 )
 Added by Hyowoon Seo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Spurred by a huge interest in the post-Shannon communication, it has recently been shown that leveraging semantics can significantly improve the communication effectiveness across many tasks. In this article, inspired by human communication, we propose a novel stochastic model of System 1 semantics-native communication (SNC) for generic tasks, where a speaker has an intention of referring to an entity, extracts the semantics, and communicates its symbolic representation to a target listener. To further reach its full potential, we additionally infuse contextual reasoning into SNC such that the speaker locally and iteratively self-communicates with a virtual agent built on the physical listeners unique way of coding its semantics, i.e., communication context. The resultant System 2 SNC allows the speaker to extract the most effective semantics for its listener. Leveraging the proposed stochastic model, we show that the reliability of System 2 SNC increases with the number of meaningful concepts, and derive the expected semantic representation (SR) bit length which quantifies the extracted effective semantics. It is also shown that System 2 SNC significantly reduces the SR length without compromising communication reliability.



rate research

Read More

121 - Mengyuan Lee , Guanding Yu , 2021
Graph neural network (GNN) is an efficient neural network model for graph data and is widely used in different fields, including wireless communications. Different from other neural network models, GNN can be implemented in a decentralized manner with information exchanges among neighbors, making it a potentially powerful tool for decentralized control in wireless communication systems. The main bottleneck, however, is wireless channel impairments that deteriorate the prediction robustness of GNN. To overcome this obstacle, we analyze and enhance the robustness of the decentralized GNN in different wireless communication systems in this paper. Specifically, using a GNN binary classifier as an example, we first develop a methodology to verify whether the predictions are robust. Then, we analyze the performance of the decentralized GNN binary classifier in both uncoded and coded wireless communication systems. To remedy imperfect wireless transmission and enhance the prediction robustness, we further propose novel retransmission mechanisms for the above two communication systems, respectively. Through simulations on the synthetic graph data, we validate our analysis, verify the effectiveness of the proposed retransmission mechanisms, and provide some insights for practical implementation.
Wireless connectivity has traditionally been regarded as an opaque data pipe carrying messages, whose context-dependent meaning and effectiveness have been ignored. Nevertheless, in emerging cyber-physical and autonomous networked systems, acquiring, processing, and sending excessive amounts of distributed real-time data, which ends up being stale or useless to the end user, will cause communication bottlenecks, increased latency, and safety issues. We envision a communication paradigm shift, which makes the Semantics of Information, i.e., the significance and the usefulness of messages with respect to the goal of data exchange, the underpinning of the entire communication process. This entails a goal-oriented unification of information generation, transmission, and usage, by taking into account process dynamics, signal sparsity, data correlation, and semantic information attributes. We apply this structurally new, synergetic approach to a communication scenario where the destination is tasked with real-time source reconstruction for the purpose of remote actuation. Capitalizing on semantics-empowered sampling and communication policies, we show significant reduction in both reconstruction error and cost of actuation error, as well as in the number of uninformative samples generated.
We consider federated edge learning (FEEL) over wireless fading channels taking into account the downlink and uplink channel latencies, and the random computation delays at the clients. We speed up the training process by overlapping the communication with computation. With fountain coded transmission of the global model update, clients receive the global model asynchronously, and start performing local computations right away. Then, we propose a dynamic client scheduling policy, called MRTP, for uploading local model updates to the parameter server (PS), which, at any time, schedules the client with the minimum remaining upload time. However, MRTP can lead to biased participation of clients in the update process, resulting in performance degradation in non-iid data scenarios. To overcome this, we propose two alternative schemes with fairness considerations, termed as age-aware MRTP (A-MRTP), and opportunistically fair MRTP (OF-MRTP). In A-MRTP, the remaining clients are scheduled according to the ratio between their remaining transmission time and the update age, while in OF-MRTP, the selection mechanism utilizes the long term average channel rate of the clients to further reduce the latency while ensuring fair participation of the clients. It is shown through numerical simulations that OF-MRTP provides significant reduction in latency without sacrificing test accuracy.
Unrestricted mutation of shared state is a source of many well-known problems. The predominant safe solutions are pure functional programming, which bans mutation outright, and flow sensitive type systems, which depend on sophisticated typing rules. Mutable value semantics is a third approach that bans sharing instead of mutation, thereby supporting part-wise in-place mutation and local reasoning, while maintaining a simple type system. In the purest form of mutable value semantics, references are second-class: they are only created implicitly, at function boundaries, and cannot be stored in variables or object fields. Hence, variables can never share mutable state. Because references are often regarded as an indispensable tool to write efficient programs, it is legitimate to wonder whether such a discipline can compete other approaches. As a basis for answering that question, we demonstrate how a language featuring mutable value semantics can be compiled to efficient native code. This approach relies on stack allocation for static garbage collection and leverages runtime knowledge to sidestep unnecessary copies.
Gradient coding allows a master node to derive the aggregate of the partial gradients, calculated by some worker nodes over the local data sets, with minimum communication cost, and in the presence of stragglers. In this paper, for gradient coding with linear encoding, we characterize the optimum communication cost for heterogeneous distributed systems with emph{arbitrary} data placement, with $s in mathbb{N}$ stragglers and $a in mathbb{N}$ adversarial nodes. In particular, we show that the optimum communication cost, normalized by the size of the gradient vectors, is equal to $(r-s-2a)^{-1}$, where $r in mathbb{N}$ is the minimum number that a data partition is replicated. In other words, the communication cost is determined by the data partition with the minimum replication, irrespective of the structure of the placement. The proposed achievable scheme also allows us to target the computation of a polynomial function of the aggregated gradient matrix. It also allows us to borrow some ideas from approximation computing and propose an approximate gradient coding scheme for the cases when the repetition in data placement is smaller than what is needed to meet the restriction imposed on communication cost or when the number of stragglers appears to be more than the presumed value in the system design.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا