Do you want to publish a course? Click here

Semantics-Empowered Communication for Networked Intelligent Systems

197   0   0.0 ( 0 )
 Added by Nikolaos Pappas
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Wireless connectivity has traditionally been regarded as an opaque data pipe carrying messages, whose context-dependent meaning and effectiveness have been ignored. Nevertheless, in emerging cyber-physical and autonomous networked systems, acquiring, processing, and sending excessive amounts of distributed real-time data, which ends up being stale or useless to the end user, will cause communication bottlenecks, increased latency, and safety issues. We envision a communication paradigm shift, which makes the Semantics of Information, i.e., the significance and the usefulness of messages with respect to the goal of data exchange, the underpinning of the entire communication process. This entails a goal-oriented unification of information generation, transmission, and usage, by taking into account process dynamics, signal sparsity, data correlation, and semantic information attributes. We apply this structurally new, synergetic approach to a communication scenario where the destination is tasked with real-time source reconstruction for the purpose of remote actuation. Capitalizing on semantics-empowered sampling and communication policies, we show significant reduction in both reconstruction error and cost of actuation error, as well as in the number of uninformative samples generated.



rate research

Read More

In this paper, we introduce the Age of Incorrect Information (AoII) as an enabler for semantics-empowered communication, a newly advocated communication paradigm centered around datas role and its usefulness to the communications goal. First, we shed light on how the traditional communication paradigm, with its role-blind approach to data, is vulnerable to performance bottlenecks. Next, we highlight the shortcomings of several proposed performance measures destined to deal with the traditional communication paradigms limitations, namely the Age of Information (AoI) and the error-based metrics. We also show how the AoII addresses these shortcomings and captures more meaningfully the purpose of data. Afterward, we consider the problem of minimizing the average AoII in a transmitter-receiver pair scenario where packets are sent over an unreliable channel subject to a transmission rate constraint. We prove that the optimal transmission strategy is a randomized threshold policy, and we propose a low complexity algorithm that finds both the optimal threshold and the randomization parameter. Furthermore, we provide a theoretical comparison between the AoII framework and the standard error-based metrics counterpart. Interestingly, we show that the AoII-optimal policy is also error-optimal for the adopted information source model. At the same time, the converse is not necessarily true. Finally, we implement our proposed policy in various real-life applications, such as video streaming, and we showcase its performance advantages compared to both the error-optimal and the AoI-optimal policies.
This paper investigates the system spectral efficiency (SE) in reconfigurable intelligent surface (RIS)-aided multiuser multiple-input single-output (MISO) systems, where RIS can reconfigure the propagation environment via a large number of controllable and intelligent phase shifters. In order to explore the system SE performance behavior with user proportional fairness for such a system, an optimization problem is formulated to maximize the SE by jointly considering the power allocation at the base station (BS) and phase shift at the RIS, under nonlinear proportional rate fairness constraints. To solve the nonconvex optimization problem, an effective solution is developed, which capitalizes on an iterative algorithm with closed-form expressions, i.e., alternatively optimizing the transmit power at the BS and the reflecting phase shift at the RIS. Numerical simulations are provided to validate the theoretical analysis and assess the performance of the proposed alternative algorithm.
This paper introduces a novel approach of utilizing the reconfigurable intelligent surface (RIS) for joint data modulation and signal beamforming in a multi-user downlink cellular network by leveraging the idea of backscatter communication. We present a general framework in which the RIS, referred to as modulating intelligent surface (MIS) in this paper, is used to: i) beamform the signals for a set of users whose data modulation is already performed by the base station (BS), and at the same time, ii) embed the data of a different set of users by passively modulating the deliberately sent carrier signals from the BS to the RIS. To maximize each users spectral efficiency, a joint non-convex optimization problem is formulated under the sum minimum mean-square error (MMSE) criterion. Alternating optimization is used to divide the original joint problem into two tasks of: i) separately optimizing the MIS phase-shifts for passive beamforming along with data embedding for the BS- and MIS-served users, respectively, and ii) jointly optimizing the active precoder and the receive scaling factor for the BS- and MIS-served users, respectively. While the solution to the latter joint problem is found in closed-form using traditional optimization techniques, the optimal phase-shifts at the MIS are obtained by deriving the appropriate optimization-oriented vector approximate message passing (OOVAMP) algorithm. Moreover, the original joint problem is solved under both ideal and practical constraints on the MIS phase shifts, namely, the unimodular constraint and assuming each MIS element to be terminated by a variable reactive load. The proposed MIS-assisted scheme is compared against state-of-the-art RIS-assisted wireless communication schemes and simulation results reveal that it brings substantial improvements in terms of system throughput while supporting a much higher number of users.
This paper integrates non-orthogonal multiple access (NOMA) and over-the-air federated learning (AirFL) into a unified framework using one simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS). The STAR-RIS plays an important role in adjusting the decoding order of hybrid users for efficient interference mitigation and omni-directional coverage extension. To capture the impact of non-ideal wireless channels on AirFL, a closed-form expression for the optimality gap (a.k.a. convergence upper bound) between the actual loss and the optimal loss is derived. This analysis reveals that the learning performance is significantly affected by active and passive beamforming schemes as well as wireless noise. Furthermore, when the learning rate diminishes as the training proceeds, the optimality gap is explicitly characterized to converge with a linear rate. To accelerate convergence while satisfying QoS requirements, a mixed-integer non-linear programming (MINLP) problem is formulated by jointly designing the transmit power at users and the configuration mode of STAR-RIS. Next, a trust region-based successive convex approximation method and a penalty-based semidefinite relaxation approach are proposed to handle the decoupled non-convex subproblems iteratively. An alternating optimization algorithm is then developed to find a suboptimal solution for the original MINLP problem. Extensive simulation results show that i) the proposed framework can efficiently support NOMA and AirFL users via concurrent uplink communications, ii) our algorithms can achieve a faster convergence rate on IID and non-IID settings compared to existing baselines, and iii) both the spectrum efficiency and learning performance can be significantly improved with the aid of the well-tuned STAR-RIS.
We consider a cache updating system with a source, a cache and a user. There are $n$ files. The source keeps the freshest version of the files which are updated with known rates $lambda_i$. The cache downloads and keeps the freshest version of the files from the source with rates $c_i$. The user gets updates from the cache with rates $u_i$. When the user gets an update, it either gets a fresh update from the cache or the file at the cache becomes outdated by a file update at the source in which case the user gets an outdated update. We find an analytical expression for the average freshness of the files at the user. Next, we generalize our setting to the case where there are multiple caches in between the source and the user, and find the average freshness at the user. We provide an alternating maximization based method to find the update rates for the cache(s), $c_i$, and for the user, $u_i$, to maximize the freshness of the files at the user. We observe that for a given set of update rates for the user (resp. for the cache), the optimal rate allocation policy for the cache (resp. for the user) is a $threshold$ $policy$, where the optimal update rates for rapidly changing files at the source may be equal to zero. Finally, we consider a system where multiple users are connected to a single cache and find update rates for the cache and the users to maximize the total freshness over all users.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا