No Arabic abstract
Zero correlation zone (ZCZ) sequences and Golay sequences are two kinds of sequences with different preferable correlation properties. It was shown by Gong textit{et al.} and Chen textit{et al.} that some Golay sequences also possess a large ZCZ and are good candidates for pilots in OFDM systems. Known Golay sequences with ZCZ reported in the literature have a limitation in the length which is the form of a power of 2. One objective of this paper is to propose a construction of Golay complementary pairs (GCPs) with new lengths whose periodic autocorrelation of each of the Golay sequences and periodic corss-correlation of the pair displays a zero correlation zone (ZCZ) around the in-phase position. Specifically, the proposed GCPs have length $4N$ (where, $N$ is the length of a GCP) and ZCZ width $N+1$. Another objective of this paper is to extend the construction to two-dimensional Golay complementary array pairs (GCAPs). Interestingly the periodic corss-correlation of the proposed GACPs also have large ZCZs around the in-phase position.
This paper is devoted to sequences and focuses on designing new two-dimensional (2-D) Z-complementary array pairs (ZCAPs) by exploring two promising approaches. A ZCAP is a pair of 2-D arrays, whose 2-D autocorrelation sum gives zero value at all time shifts in a zone around the $(0,0)$ time shift, except the $(0,0)$ time shift. The first approach investigated in this paper uses a one-dimensional (1-D) Z-complementary pair (ZCP), which is an extension of the 1-D Golay complementary pair (GCP) where the autocorrelations of constituent sequences are complementary within a zero correlation zone (ZCZ). The second approach involves directly generalized Boolean functions (which are important components with many applications, particularly in (symmetric) cryptography). Along with this paper, new construction of 2-D ZCAPs is proposed based on 1-D ZCP, and direct construction of 2-D ZCAPs is also offered directly by 2-D generalized Boolean functions. Compared to existing constructions based on generalized Boolean functions, our proposed construction covers all of them. ZCZ sequences are a class of spreading sequences having ideal auto-correlation and cross-correlation in a zone around the origin. In recent years, they have been extensively studied due to their crucial applications, particularly in quasi-synchronous code division multiple access systems. Our proposed 2-D ZCAPs based on 2-D generalized Boolean functions have larger 2-D $mathrm{ZCZ}_{mathrm{ratio}}=frac{6}{7}$. Compared to the construction based on ZCPs, our proposed 2-D ZCAPs also have the largest 2-D $mathrm{ZCZ}_{mathrm{ratio}}$.
Cross Z-complementary pairs (CZCPs) are a special kind of Z-complementary pairs (ZCPs) having zero autocorrelation sums around the in-phase position and end-shift position, also having zero cross-correlation sums around the end-shift position. It can be utilized as a key component in designing optimal training sequences for broadband spatial modulation (SM) systems over frequency selective channels. In this paper, we focus on designing new CZCPs with large cross Z-complementary ratio $(mathrm{CZC}_{mathrm{ratio}})$ by exploring two promising approaches. The first one of CZCPs via properly cascading sequences from a Golay complementary pair (GCP). The proposed construction leads to $(28L,13L)-mathrm{CZCPs}$, $(28L,13L+frac{L}{2})-mathrm{CZCPs}$ and $(30L,13L-1)-mathrm{CZCPs}$, where $L$ is the length of a binary GCP. Besides, we emphasize that, our proposed CZCPs have the largest $mathrm{CZC}_{mathrm{ratio}}=frac{27}{28}$, compared with known CZCPs but no-perfect CZCPs in the literature. Specially, we proposed optimal binary CZCPs with $(28,13)-mathrm{CZCP}$ and $(56,27)-mathrm{CZCP}$. The second one of CZCPs based on Boolean functions (BFs), and the construction of CZCPs have the largest $mathrm{CZC}_{mathrm{ratio}}=frac{13}{14}$, compared with known CZCPs but no-perfect CZCPs in the literature.
The previous constructions of quadrature amplitude modulation (QAM) Golay complementary sequences (GCSs) were generalized as $4^q $-QAM GCSs of length $2^{m}$ by Li textsl{et al.} (the generalized cases I-III for $qge 2$) in 2010 and Liu textsl{et al.} (the generalized cases IV-V for $qge 3$) in 2013 respectively. Those sequences are presented as the combination of the quaternary standard GCSs and compatible offsets. By providing new compatible offsets based on the factorization of the integer $q$, we proposed two new constructions of $4^q $-QAM GCSs, which have the generalized cases I-V as special cases. The numbers of the proposed GCSs (including the generalized cases IV-V) are equal to the product of the number of the quaternary standard GCSs and the number of the compatible offsets. For $q=q_{1}times q_{2}times dotstimes q_{t}$ ($q_k>1$), the number of new offsets in our first construction is lower bounded by a polynomial of $m$ with degree $t$, while the numbers of offsets in the generalized cases I-III and IV-V are a linear polynomial of $m$ and a quadratic polynomial of $m$, respectively. In particular, the numbers of new offsets in our first construction is seven times more than that in the generalized cases IV-V for $q=4$. We also show that the numbers of new offsets in our two constructions is lower bounded by a cubic polynomial of $m$ for $q=6$. Moreover, our proof implies that all the mentioned GCSs over QAM in this paper can be regarded as projections of Golay complementary arrays of size $2times2timescdotstimes2$.
A new method to construct $q$-ary complementary sequence sets (CSSs) and complete complementary codes (CCCs) of size $N$ is proposed by using desired para-unitary (PU) matrices. The concept of seed PU matrices is introduced and a systematic approach on how to compute the explicit forms of the functions in constructed CSSs and CCCs from the seed PU matrices is given. A general form of these functions only depends on a basis of the functions from $Z_N$ to $Z_q$ and representatives in the equivalent class of Butson-type Hadamard (BH) matrices. Especially, the realization of Golay pairs from the our general form exactly coincides with the standard Golay pairs. The realization of ternary complementary sequences of size $3$ is first reported here. For the realization of the quaternary complementary sequences of size 4, almost all the sequences derived here are never reported before. Generalized seed PU matrices and the recursive constructions of the desired PU matrices are also studied, and a large number of new constructions of CSSs and CCCs are given accordingly. From the perspective of this paper, all the known results of CSSs and CCCs with explicit GBF form in the literature (except non-standard Golay pairs) are constructed from the Walsh matrices of order 2. This suggests that the proposed method with the BH matrices of higher orders will yield a large number of new CSSs and CCCs with the exponentially increasing number of the sequences of low peak-to-mean envelope power ratio.
A new method to construct $q$-ary complementary sequence (or array) sets (CSSs) and complete complementary codes (CCCs) of size $N$ is introduced in this paper. An algorithm on how to compute the explicit form of the functions in constructed CSS and CCC is also given. A general form of these functions only depends on a basis of functions from $Z_N$ to $Z_q$ and representatives in the equivalent class of Butson-type Hadamard matrices. Surprisingly, all the functions fill up a larger number of cosets of a linear code, compared with the existing constructions. From our general construction, its realization of $q$-ary Golay pairs exactly coincides with the standard Golay sequences. The realization of ternary complementary sequences of size $3$ is first reported here. For binary and quaternary complementary sequences of size 4, a general Boolean function form of these sequences is obtained. Most of these sequences are also new. Moreover, most of quaternary sequences cannot be generalized from binary sequences, which is different from known constructions. More importantly, both binary and quaternary sequences of size 4 constitute a large number of cosets of the linear code respectively.