Do you want to publish a course? Click here

Spatio-temporal heterogeneities of entanglement in the many-body localized phase

122   0   0.0 ( 0 )
 Added by Claudia Artiaco
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a spatio-temporal characterization of the entanglement dynamics in many-body localized (MBL) systems, which exhibits a striking resemblance with dynamical heterogeneities in classical glasses. Specifically, we find that the relaxation times of local entanglement, as measured by the concurrence, are spatially correlated giving rise to a dynamical correlation length for quantum entanglement. Our work provides a yet unrecognized connection between the behavior of classical glasses and the genuine quantum dynamics of MBL systems.



rate research

Read More

The Loschmidt echo, defined as the overlap between quantum wave function evolved with different Hamiltonians, quantifies the sensitivity of quantum dynamics to perturbations and is often used as a probe of quantum chaos. In this work we consider the behavior of the Loschmidt echo in the many body localized phase, which is characterized by emergent local integrals of motion, and provides a generic example of non-ergodic dynamics. We demonstrate that the fluctuations of the Loschmidt echo decay as a power law in time in the many-body localized phase, in contrast to the exponential decay in few-body ergodic systems. We consider the spin-echo generalization of the Loschmidt echo, and argue that the corresponding correlation function saturates to a finite value in localized systems. Slow, power-law decay of fluctuations of such spin-echo-type overlap is related to the operator spreading and is present only in the many-body localized phase, but not in a non-interacting Anderson insulator. While most of the previously considered probes of dephasing dynamics could be understood by approximating physical spin operators with local integrals of motion, the Loschmidt echo and its generalizations crucially depend on the full expansion of the physical operators via local integrals of motion operators, as well as operators which flip local integrals of motion. Hence, these probes allow to get insights into the relation between physical operators and local integrals of motion, and access the operator spreading in the many-body localized phase.
We theoretically study the response of a many-body localized system to a local quench from a quantum information perspective. We find that the local quench triggers entanglement growth throughout the whole system, giving rise to a logarithmic lightcone. This saturates the modified Lieb-Robinson bound for quantum information propagation in many-body localized systems previously conjectured based on the existence of local integrals of motion. In addition, near the localization-delocalization transition, we find that the final states after the local quench exhibit volume-law entanglement. We also show that the local quench induces a deterministic orthogonality catastrophe for highly excited eigenstates, where the typical wave-function overlap between the pre- and post-quench eigenstates decays {it exponentially} with the system size.
Recent experiments in quantum simulators have provided evidence for the Many-Body Localized (MBL) phase in 1D and 2D bosonic quantum matter. The theoretical study of such bosonic MBL, however, is a daunting task due to the unbounded nature of its Hilbert space. In this work, we introduce a method to compute the long-time real-time evolution of 1D and 2D bosonic systems in an MBL phase at strong disorder and weak interactions. We focus on local dynamical indicators that are able to distinguish an MBL phase from an Anderson localized one. In particular, we consider the temporal fluctuations of local observables, the spatiotemporal behavior of two-time correlators and Out-Of-Time-Correlators (OTOCs). We show that these few-body observables can be computed with a computational effort that depends only polynomially on system size but is independent of the target time, by extending a recently proposed numerical method [Phys. Rev. B 99, 241114 (2019)] to mixed states and bosons. Our method also allows us to surrogate our numerical study with analytical considerations of the time-dependent behavior of the studied quantities.
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
We show how the thermodynamic properties of large many-body localized systems can be studied using quantum Monte Carlo simulations. To this end we devise a heuristic way of constructing local integrals of motion of very high quality, which are added to the Hamiltonian in conjunction with Lagrange multipliers. The ground state simulation of the shifted Hamiltonian corresponds to a high-energy state of the original Hamiltonian in case of exactly known local integrals of motion. We can show that the inevitable mixing between eigenstates as a consequence of non-perfect integrals of motion is weak enough such that the characteristics of many-body localized systems are not averaged out in our approach, unlike the standard ensembles of statistical mechanics. Our method paves the way to study higher dimensions and indicates that a full many-body localized phase in 2d, where (nearly) all eigenstates are localized, is likely to exist.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا