Do you want to publish a course? Click here

The Poincare exponent and the dimensions of Kleinian limit sets

380   0   0.0 ( 0 )
 Added by Jonathan Fraser
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We provide a proof of the (well-known) result that the Poincare exponent of a non-elementary Kleinian group is a lower bound for the upper box dimension of the limit set. Our proof only uses elementary hyperbolic and fractal geometry.



rate research

Read More

Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting on that space, the orbital set is the orbit of the given set under the action of the group. We may view orbital sets as bounded (often fractal) subsets of Euclidean space. We prove that the upper box dimension of an orbital set is given by the maximum of three quantities: the upper box dimension of the given set; the Poincare exponent of the Kleinian group; and the upper box dimension of the limit set of the Kleinian group. Since we do not make any assumptions about the Kleinian group, none of the terms in the maximum can be removed in general. We show by constructing an explicit example that the (hyperbolic) boundedness assumption on $C$ cannot be removed in general.
We compare different notions of limit sets for the action of Kleinian groups on the $n-$dimensional projective space via the irreducible representation $varrho:PSL(2,mathbb{C})to PSL(n+1,mathbb{C}).$ In particular, we prove that if the Kleinian group is convex-cocompact, the Myrberg and the Kulkarni limit coincide.
Given an iterated function system of affine dilations with fixed points the vertices of a regular polygon, we characterize which points in the limit set lie on the boundary of its convex hull.
204 - Sebastien Labbe 2019
We define a partition $mathcal{P}_0$ and a $mathbb{Z}^2$-rotation ($mathbb{Z}^2$-action defined by rotations) on a 2-dimensional torus whose associated symbolic dynamical system is a minimal proper subshift of the Jeandel-Rao aperiodic Wang shift defined by 11 Wang tiles. We define another partition $mathcal{P}_mathcal{U}$ and a $mathbb{Z}^2$-rotation on $mathbb{T}^2$ whose associated symbolic dynamical system is equal to a minimal and aperiodic Wang shift defined by 19 Wang tiles. This proves that $mathcal{P}_mathcal{U}$ is a Markov partition for the $mathbb{Z}^2$-rotation on $mathbb{T}^2$. We prove in both cases that the toral $mathbb{Z}^2$-rotation is the maximal equicontinuous factor of the minimal subshifts and that the set of fiber cardinalities of the factor map is ${1,2,8}$. The two minimal subshifts are uniquely ergodic and are isomorphic as measure-preserving dynamical systems to the toral $mathbb{Z}^2$-rotations. It provides a construction of these Wang shifts as model sets of 4-to-2 cut and project schemes. A do-it-yourself puzzle is available in the appendix to illustrate the results.
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and the volume of the random convex hull of $X_1,ldots,X_{r+1}$ are established in high dimensions, that is, as $r$ and $n$ tend to infinity simultaneously. This includes, Berry-Esseen-type central limit theorems, log-normal limit theorems, moderate and large deviations. Also different types of mod-$phi$ convergence are derived. The results heavily depend on the asymptotic growth of $r$ relative to $n$. For example, we prove that the fluctuations of the volume of the simplex are normal (respectively, log-normal) if $r=o(n)$ (respectively, $rsim alpha n$ for some $0 < alpha < 1$).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا