Do you want to publish a course? Click here

Notes on Perfectly Matched Layers (PMLs)

72   0   0.0 ( 0 )
 Added by Steven G. Johnson
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This note is intended as a brief introduction to the theory and practice of perfectly matched layer (PML) absorbing boundaries for wave equations, originally developed for MIT courses 18.369 and 18.336. It focuses on the complex stretched-coordinate viewpoint, and also discusses the limitations of PML.



rate research

Read More

In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered in these derivations. Unlike with classical formulations used by Bubnov-Galerkin methods, with so-called ultraweak variational formulations, these two strategies in fact deliver different formulations in the PML region. One of the strategies, which is argued to be more physically natural, is employed for numerically solving two- and three-dimensional time-harmonic acoustic, elastic, and electromagnetic wave propagation problems, defined in unbounded domains. Through these numerical experiments, efficacy of the new DPG methods with PMLs is verified.
For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. For scattering problems in a layered medium, standard BIE methods based on the Greens function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Greens function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Greens function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Greens function of the PML-transformed free space is easy to evaluate and the PMLs are very effective in truncating the unbounded interfaces. Numerical examples are presented to validate our method and demonstrate its accuracy.
We investigate in a $2$D setting the scattering of time-harmonic electromagnetic waves by a plasmonic device, represented as a non dissipative bounded and penetrable obstacle with a negative permittivity. Using the $textrm{T}$-coercivity approach, we first prove that the problem is well-posed in the classical framework $H^1_{text{loc}} $ if the negative permittivity does not lie in some critical interval whose definition depends on the shape of the device. When the latter has corners, for values inside the critical interval, unusual strong singularities for the electromagnetic field can appear. In that case, well-posedness is obtained by imposing a radiation condition at the corners to select the outgoing black-hole plasmonic wave, that is the one which carries energy towards the corners. A simple and systematic criterion is given to define what is the outgoing solution. Finally, we propose an original numerical method based on the use of Perfectly Matched Layers at the corners. We emphasize that it is necessary to design an $textit{ad hoc}$ technique because the field is too singular to be captured with standard finite element methods.
Density matrix perturbation theory (DMPT) is known as a promising alternative to the Rayleigh-Schrodinger perturbation theory, in which the sum-over-state (SOS) is replaced by algorithms with perturbed density matrices as the input variables. In this article, we formulate and discuss three types of DMPT, with two of them based only on density matrices: the approach of Kussmann and Ochsenfeld [J. Chem. Phys.127, 054103 (2007)] is reformulated via the Sylvester equation, and the recursive DMPT of A.M.N. Niklasson and M. Challacombe [Phys. Rev. Lett. 92, 193001 (2004)] is extended to the hole-particle canonical purification (HPCP) from [J. Chem. Phys. 144, 091102 (2016)]. Comparison of the computational performances shows that the aformentioned methods outperform the standard SOS. The HPCP-DMPT demonstrates stable convergence profiles but at a higher computational cost when compared to the original recursive polynomial method
114 - Tianpeng Jiang , Yang Xiang 2020
The optical resonance problem is similar to but different from time-steady Schr{o}dinger equation. One big challenge is that the eigenfunctions in resonance problem is exponentially growing. We give physical explanation to this boundary condition and introduce perfectly matched layer (PML) method to transform eigenfunctions from exponential-growth to exponential-decay. Based on the complex stretching technique, we construct a non-Hermitian Hamiltonian for the optical resonance problem. We successfully validate the effectiveness of the Hamiltonian by calculate its eigenvalues in the circular cavity and compare with the analytical results. We also use the proposed Hamiltonian to investigate the mode evolution around exceptional points in the quad-cosine cavity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا