Do you want to publish a course? Click here

On perfectly matched layers for discontinuous Petrov-Galerkin methods

97   0   0.0 ( 0 )
 Added by Brendan Keith
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article, several discontinuous Petrov-Galerkin (DPG) methods with perfectly matched layers (PMLs) are derived along with their quasi-optimal graph test norms. Ultimately, two different complex coordinate stretching strategies are considered in these derivations. Unlike with classical formulations used by Bubnov-Galerkin methods, with so-called ultraweak variational formulations, these two strategies in fact deliver different formulations in the PML region. One of the strategies, which is argued to be more physically natural, is employed for numerically solving two- and three-dimensional time-harmonic acoustic, elastic, and electromagnetic wave propagation problems, defined in unbounded domains. Through these numerical experiments, efficacy of the new DPG methods with PMLs is verified.



rate research

Read More

71 - Steven G. Johnson 2021
This note is intended as a brief introduction to the theory and practice of perfectly matched layer (PML) absorbing boundaries for wave equations, originally developed for MIT courses 18.369 and 18.336. It focuses on the complex stretched-coordinate viewpoint, and also discusses the limitations of PML.
Generalizing the framework of an ultra-weak formulation for a hypersingular integral equation on closed polygons in [N. Heuer, F. Pinochet, arXiv 1309.1697 (to appear in SIAM J. Numer. Anal.)], we study the case of a hypersingular integral equation on open and closed polyhedral surfaces. We develop a general ultra-weak setting in fractional-order Sobolev spaces and prove its well-posedness and equivalence with the traditional formulation. Based on the ultra-weak formulation, we establish a discontinuous Petrov-Galerkin method with optimal test functions and prove its quasi-optimal convergence in related Sobolev norms. For closed surfaces, this general result implies quasi-optimal convergence in the L^2-norm. Some numerical experiments confirm expected convergence rates.
We present the recent development of hybridizable and embedded discontinuous Galerkin (DG) methods for wave propagation problems in fluids, solids, and electromagnetism. In each of these areas, we describe the methods, discuss their main features, display numerical results to illustrate their performance, and conclude with bibliography notes. The main ingredients in devising these DG methods are (i) a local Galerkin projection of the underlying partial differential equations at the element level onto spaces of polynomials of degree k to parametrize the numerical solution in terms of the numerical trace; (ii) a judicious choice of the numerical flux to provide stability and consistency; and (iii) a global jump condition that enforces the continuity of the numerical flux to obtain a global system in terms of the numerical trace. These DG methods are termed hybridized DG methods, because they are amenable to hybridization (static condensation) and hence to more efficient implementations. They share many common advantages of DG methods and possess some unique features that make them well-suited to wave propagation problems.
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $texttt{PolyDPG}$ software supporting polygonal and conventional elements.
We prove that the most common filtering procedure for nodal discontinuous Galerkin (DG) methods is stable. The proof exploits that the DG approximation is constructed from polynomial basis functions and that integrals are approximated with high-order accurate Legendre-Gauss-Lobatto quadrature. The theoretical discussion serves to re-contextualize stable filtering results for finite difference methods into the DG setting. It is shown that the stability of the filtering is equivalent to a particular contractivity condition borrowed from the analysis of so-called transmission problems. As such, the temporal stability proof relies on the fact that the underlying spatial discretization of the problem possesses a semi-discrete bound on the solution. Numerical tests are provided to verify and validate the underlying theoretical results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا