No Arabic abstract
We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties which make them ideal detectors for such a signal. First, ion traps have demonstrated significant isolation of the ions from the environment, greatly reducing the background heating and event rates. Second, ion traps can have low thresholds for detection of energy deposition, down to $sim text{neV}$. Third, since the ions are charged, they naturally have large cross sections for scattering with the millicharged particles, further enhanced by the low velocities of the thermalized millicharges. Despite ion-trap setups being optimized for other goals, we find that existing measurements put new constraints on millicharged dark matter which are many orders of magnitude beyond previous bounds. For example, for a millicharge dark matter mass $m_Q=10~textrm{GeV}$ and charge $10^{-3}$ of the electron charge, ion traps limit the local density to be $n_Q lesssim 1 , textrm{cm}^{-3}$, a factor $sim 10^8$ better than current constraints. Future dedicated ion trap experiments could reach even further into unexplored parameter space.
We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In the wave-like regime of high occupation numbers, annihilation into gauge bosons can be drastically enhanced by parametric resonance. The millicharged particle can either be minimally coupled to photons or its electromagnetic interaction can be mediated via kinetic mixing with a massless hidden photon. In the case of a direct coupling current observational constraints on the millicharge are stronger than those arising from parametric resonance. For the (theoretically preferred) case of kinetic mixing large regions of parameter space are affected by the parametric resonance leading at least to a fragmentation of the dark matter field if not its outright destruction.
Inelastic dark matter reconciles the DAMA anomaly with other null direct detection experiments and points to a non-minimal structure in the dark matter sector. In addition to the dominant inelastic interaction, dark matter scattering may have a subdominant elastic component. If these elastic interactions are suppressed at low momentum transfer, they will have similar nuclear recoil spectra to inelastic scattering events. While upcoming direct detection experiments will see strong signals from such models, they may not be able to unambiguously determine the presence of the subdominant elastic scattering from the recoil spectra alone. We show that directional detection experiments can separate elastic and inelastic scattering events and discover the underlying dynamics of dark matter models.
We identify potentially the worlds most sensitive location to search for millicharged particles in the 10 MeV to 100 GeV mass range: the forward region at the LHC. We propose constructing a scintillator-based experiment, FORward MicrOcharge SeArch (FORMOSA) in this location, and estimate the corresponding sensitivity projection. We show that FORMOSA can discover millicharged particles in a large and unexplored parameter space, and study strongly interacting dark matter that cannot be detected by ground-based direct-detection experiments. The newly proposed LHC Forward Physics Facility (FPF) provides an ideal structure to host the full FORMOSA experiment.
Identifying the true theory of dark matter depends crucially on accurately characterizing interactions of dark matter (DM) with other species. In the context of DM direct detection, we present a study of the prospects for correctly identifying the low-energy effective DM-nucleus scattering operators connected to UV-complete models of DM-quark interactions. We take a census of plausible UV-complete interaction models with different low-energy leading-order DM-nuclear responses. For each model (corresponding to different spin-, momentum-, and velocity-dependent responses), we create a large number of realizations of recoil-energy spectra, and use Bayesian methods to investigate the probability that experiments will be able to select the correct scattering model within a broad set of competing scattering hypotheses. We conclude that agnostic analysis of a strong signal (such as Generation-2 would see if cross sections are just below the current limits) seen on xenon and germanium experiments is likely to correctly identify momentum dependence of the dominant response, ruling out models with either heavy or light mediators, and enabling downselection of allowed models. However, a unique determination of the correct UV completion will critically depend on the availability of measurements from a wider variety of nuclear targets, including iodine or fluorine. We investigate how model-selection prospects depend on the energy window available for the analysis. In addition, we discuss accuracy of the DM particle mass determination under a wide variety of scattering models, and investigate impact of the specific types of particle-physics uncertainties on prospects for model selection.
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in general involves up to three nested integrals) with a much faster parametrization in terms of ordinary polynomials of the dark matter mass and couplings, obtained in an initial training phase. In this article, we validate our surrogate model on the multi-dimensional parameter space resulting from the effective field theory description of dark matter interactions with nuclei, including also astrophysical uncertainties in the description of the dark matter halo. As a concrete example, we use this tool to study the complementarity of different targets to discriminate simplified dark matter models. We demonstrate that RAPIDD is fast and accurate, and particularly well-suited to explore a multi-dimensional parameter space, such as the one in effective field theory approach, and scans with a large number of evaluations.