Do you want to publish a course? Click here

Challenging the Stability of Light Millicharged Dark Matter

75   0   0.0 ( 0 )
 Added by Sebastian Schenk
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the cosmological stability of light bosonic dark matter carrying a tiny electric charge. In the wave-like regime of high occupation numbers, annihilation into gauge bosons can be drastically enhanced by parametric resonance. The millicharged particle can either be minimally coupled to photons or its electromagnetic interaction can be mediated via kinetic mixing with a massless hidden photon. In the case of a direct coupling current observational constraints on the millicharge are stronger than those arising from parametric resonance. For the (theoretically preferred) case of kinetic mixing large regions of parameter space are affected by the parametric resonance leading at least to a fragmentation of the dark matter field if not its outright destruction.



rate research

Read More

We propose the use of trapped ions for detection of millicharged dark matter. Millicharged particles will scatter off the ions, giving a signal either in individual events or in the overall heating rate of the ions. Ion traps have several properties which make them ideal detectors for such a signal. First, ion traps have demonstrated significant isolation of the ions from the environment, greatly reducing the background heating and event rates. Second, ion traps can have low thresholds for detection of energy deposition, down to $sim text{neV}$. Third, since the ions are charged, they naturally have large cross sections for scattering with the millicharged particles, further enhanced by the low velocities of the thermalized millicharges. Despite ion-trap setups being optimized for other goals, we find that existing measurements put new constraints on millicharged dark matter which are many orders of magnitude beyond previous bounds. For example, for a millicharge dark matter mass $m_Q=10~textrm{GeV}$ and charge $10^{-3}$ of the electron charge, ion traps limit the local density to be $n_Q lesssim 1 , textrm{cm}^{-3}$, a factor $sim 10^8$ better than current constraints. Future dedicated ion trap experiments could reach even further into unexplored parameter space.
We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
Very light dark matter is usually taken to consist of uncharged bosons such as axion-like particles or dark photons. Here, we consider the prospect of very light, possibly even sub-eV dark matter carrying a net charge that is (approximately) conserved. By making use of the Affleck-Dine mechanism for its production, we show that a sizable fraction of the energy density can be stored in the asymmetric component. We furthermore argue that there exist regions of parameter space where the energy density contained in symmetric particle-antiparticle pairs without net charge can to some degree be depleted by considering couplings to additional fields. Finally, we make an initial foray into the phenomenology of this scenario by considering the possibility that dark matter is coupled to the visible sector via the Higgs portal.
400 - Yuri Shtanov 2021
A new cosmological scenario is proposed in which a light scalaron of $f (R)$ gravity plays the role of dark matter. In this scenario, the scalaron initially resides at the minimum of its effective potential while the electroweak symmetry is unbroken. At the beginning of the electroweak crossover, the evolving expectation value of the Higgs field triggers the evolution of the scalaron due to interaction between these fields. After the electroweak crossover, the oscillating scalaron can represent cold dark matter. Its current energy density depends on a single free parameter, the scalaron mass $m$, and the value $m simeq 4 times 10^{-3}, text{eV}$ is required to explain the observed dark-matter abundance. Larger mass values would be required in scenarios where the scalaron is excited before the electroweak crossover.
We identify potentially the worlds most sensitive location to search for millicharged particles in the 10 MeV to 100 GeV mass range: the forward region at the LHC. We propose constructing a scintillator-based experiment, FORward MicrOcharge SeArch (FORMOSA) in this location, and estimate the corresponding sensitivity projection. We show that FORMOSA can discover millicharged particles in a large and unexplored parameter space, and study strongly interacting dark matter that cannot be detected by ground-based direct-detection experiments. The newly proposed LHC Forward Physics Facility (FPF) provides an ideal structure to host the full FORMOSA experiment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا