Do you want to publish a course? Click here

TESS Input Catalog versions 8.1 and 8.2: Phantoms in the 8.0 Catalog and How to Handle Them

66   0   0.0 ( 0 )
 Added by Martin Paegert
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

No English abstract



rate research

Read More

The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky photometric survey over two years, with a core mission goal to discover small transiting exoplanets orbiting nearby bright stars. It will obtain 30-minute cadence observations of all objects in the TESS fields of view, along with 2-minute cadence observations of 200,000 to 400,000 selected stars. The choice of which stars to observe at the 2-min cadence is driven by the need to detect small transiting planets, which leads to the selection of primarily bright, cool dwarfs. We describe the catalogs assembled and the algorithms used to populate the TESS Input Catalog (TIC). We also describe a ranking system for prioritizing stars according to the smallest transiting planet detectable, and assemble a Candidate Target List (CTL) using that ranking. We discuss additional factors that affect the ability to photometrically detect and dynamically confirm small planets, and we note additional stellar populations of interest that may be added to the final target list. The TIC is available on the STScI MAST server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL https://filtergraph.vanderbilt.edu/tess_ctl .
We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2-minute cadence observations, and assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes (MAST) server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.
In the search for life in the cosmos, NASAs Transiting Exoplanet Survey Satellite (TESS) mission has already monitored about 74% of the sky for transiting extrasolar planets, including potentially habitable worlds. However, TESS only observed a fraction of the stars long enough to be able to find planets like Earth. We use the primary mission data - the first two years of observations - and identify 4,239 stars within 210pc that TESS observed long enough to see 3 transits of an exoplanet that receives similar irradiation to Earth: 738 of these stars are located within 30pc. We provide reliable stellar parameters from the TESS Input Catalog that incorporates Gaia DR2 and also calculate the transit depth and radial velocity semi-amplitude for an Earth-analog planet. Of the 4,239 stars in the Revised TESS HZ Catalog, 9 are known exoplanet hosts - GJ 1061, GJ 1132, GJ 3512, GJ 685, Kepler-42, LHS 1815, L98-59, RR Cae, TOI 700 - around which TESS could identify additional Earth-like planetary companions. 37 additional stars host yet unconfirmed TESS Objects of Interest: three of these orbit in the habitable zone - TOI 203, TOI 715, and TOI 2298. For a subset of 614 of the 4,239 stars, TESS has observed the star long enough to be able to observe planets throughout the full temperate, habitable zone out to the equivalent of Mars orbit. Thus, the Revised TESS Habitable Zone Catalog provides a tool for observers to prioritize stars for follow-up observation to discover life in the cosmos. These stars are the best path towards the discovery of habitable planets using the TESS mission data.
We present 2,241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its two-year prime mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously-known planets recovered by TESS observations. We describe the process used to identify TOIs and investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI Catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well-suited for detailed follow-up observations. The TESS data products for the Prime Mission (Sectors 1-26), including the TOI Catalog, light curves, full-frame images, and target pixel files, are publicly available on the Mikulski Archive for Space Telescopes.
We present the Transiting Exoplanet Survey Satellite (TESS) Habitable Zone Stars Catalog, a list of 1822 nearby stars with a TESS magnitude brighter than T = 12 and reliable distances from Gaia DR2, around which the NASAs TESS mission can detect transiting planets, which receive Earth-like irradiation. For all those stars TESS is sensitive down to 2 Earth radii transiting planets during one transit. For 408 stars TESS can detect such planets down to 1 Earth size during one transit. For 1690 stars, TESS has the sensitivity to detect planets down to 1.6 times Earth-size, a commonly used limit for rocky planets in the literature, receiving Earth-analog irradiation. We select stars from the TESS Candidate Target List, based on TESS Input Catalog Version 7. We update their distances using Gaia Data Release 2, and determine whether the stars will be observed for long enough during the 2 year prime mission to probe their Earth equivalent orbital distance for transiting planets. We discuss the subset of 227 stars for which TESS can probe the full extent of the Habitable Zone, the full region around a star out to about a Mars-equivalent orbit. Observing the TESS Habitable Zone Catalog Stars will also give us deeper insight into the occurrence rate of planets, out to Earth-analog irradiation as well as in the Habitable Zone, especially around cool stars. We present the stars by decreasing angular separation of the 1AU equivalent distance to provide insights into which stars to prioritize for ground-based follow-up observations with upcoming extremely large telescopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا