Do you want to publish a course? Click here

The TESS Input Catalog and Candidate Target List

78   0   0.0 ( 0 )
 Added by Keivan Stassun
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Transiting Exoplanet Survey Satellite (TESS) will be conducting a nearly all-sky photometric survey over two years, with a core mission goal to discover small transiting exoplanets orbiting nearby bright stars. It will obtain 30-minute cadence observations of all objects in the TESS fields of view, along with 2-minute cadence observations of 200,000 to 400,000 selected stars. The choice of which stars to observe at the 2-min cadence is driven by the need to detect small transiting planets, which leads to the selection of primarily bright, cool dwarfs. We describe the catalogs assembled and the algorithms used to populate the TESS Input Catalog (TIC). We also describe a ranking system for prioritizing stars according to the smallest transiting planet detectable, and assemble a Candidate Target List (CTL) using that ranking. We discuss additional factors that affect the ability to photometrically detect and dynamically confirm small planets, and we note additional stellar populations of interest that may be added to the final target list. The TIC is available on the STScI MAST server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL https://filtergraph.vanderbilt.edu/tess_ctl .



rate research

Read More

We describe the catalogs assembled and the algorithms used to populate the revised TESS Input Catalog (TIC), based on the incorporation of the Gaia second data release. We also describe a revised ranking system for prioritizing stars for 2-minute cadence observations, and assemble a revised Candidate Target List (CTL) using that ranking. The TIC is available on the Mikulski Archive for Space Telescopes (MAST) server, and an enhanced CTL is available through the Filtergraph data visualization portal system at the URL http://filtergraph.vanderbilt.edu/tess_ctl.
We present 2,241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its two-year prime mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously-known planets recovered by TESS observations. We describe the process used to identify TOIs and investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI Catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well-suited for detailed follow-up observations. The TESS data products for the Prime Mission (Sectors 1-26), including the TOI Catalog, light curves, full-frame images, and target pixel files, are publicly available on the Mikulski Archive for Space Telescopes.
One of the most promising avenues for the detailed study of temperate Earth-sized exoplanets is the detection of such planets in transit in front of stars small and nearby enough to make possible their thorough atmospheric characterisation with next generation telescopes like the James Webb Space telescope (JWST) or Extremely Large Telescope (ELT). In this context, the TRAPPIST-1 planets form an unique benchmark system that has gathered the interest of a large scientific community. The SPECULOOS survey is an exoplanet transit survey, that targets a volume-limited (40 pc) sample of ultracool dwarf stars. We define the SPECULOOS target list as the sum of three non-overlapping sub-programs incorporating the latest type objects (T_eff < 3000K): Program1: 365 dwarfs that are small and nearby enough to make possible the detailed atmospheric characterisation of an `Earth-like planet with the upcoming JWST, Program2: 171 dwarfs of M5-type and later for which a significant detection of a planet similar to TRAPPIST-1b should be within reach of the exoplanet transit survey TESS, and Program3: 1121 dwarfs later than M6-type that aims to perform a statistical census of short-period planets around ultracool dwarf stars. Our compound target list includes 1657 photometrically classified late-type dwarfs. 260 of these targets are classified for the first time as possible nearby ultracool dwarf stars. Our general observational strategy is to monitor each target for 100 to 200hr with our telescope network, by efficiently using the synergy with TESS for our Program2 and a fraction of the targets of Program1. We expect to detect up to a few dozens temperate, rocky planets, a handful of them being amenable for atmospheric characterisation with JWST and other future giant telescopes which will improve drastically our understanding of the planetary population of the latest-type stars.
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا