No Arabic abstract
With the increasing demands of personalized learning, knowledge tracing has become important which traces students knowledge states based on their historical practices. Factor analysis methods mainly use two kinds of factors which are separately related to students and questions to model students knowledge states. These methods use the total number of attempts of students to model students learning progress and hardly highlight the impact of the most recent relevant practices. Besides, current factor analysis methods ignore rich information contained in questions. In this paper, we propose Multi-Factors Aware Dual-Attentional model (MF-DAKT) which enriches question representations and utilizes multiple factors to model students learning progress based on a dual-attentional mechanism. More specifically, we propose a novel student-related factor which records the most recent attempts on relevant concepts of students to highlight the impact of recent exercises. To enrich questions representations, we use a pre-training method to incorporate two kinds of question information including questions relation and difficulty level. We also add a regularization term about questions difficulty level to restrict pre-trained question representations to fine-tuning during the process of predicting students performance. Moreover, we apply a dual-attentional mechanism to differentiate contributions of factors and factor interactions to final prediction in different practice records. At last, we conduct experiments on several real-world datasets and results show that MF-DAKT can outperform existing knowledge tracing methods. We also conduct several studies to validate the effects of each component of MF-DAKT.
Transformer based knowledge tracing model is an extensively studied problem in the field of computer-aided education. By integrating temporal features into the encoder-decoder structure, transformers can processes the exercise information and student response information in a natural way. However, current state-of-the-art transformer-based variants still share two limitations. First, extremely long temporal features cannot well handled as the complexity of self-attention mechanism is O(n2). Second, existing approaches track the knowledge drifts under fixed a window size, without considering different temporal-ranges. To conquer these problems, we propose MUSE, which is equipped with multi-scale temporal sensor unit, that takes either local or global temporal features into consideration. The proposed model is capable to capture the dynamic changes in users knowledge states at different temporal-ranges, and provides an efficient and powerful way to combine local and global features to make predictions. Our method won the 5-th place over 3,395 teams in the Riiid AIEd Challenge 2020.
This paper focuses on tracing player knowledge in educational games. Specifically, given a set of concepts or skills required to master a game, the goal is to estimate the likelihood with which the current player has mastery of each of those concepts or skills. The main contribution of the paper is an approach that integrates machine learning and domain knowledge rules to find when the player applied a certain skill and either succeeded or failed. This is then given as input to a standard knowledge tracing module (such as those from Intelligent Tutoring Systems) to perform knowledge tracing. We evaluate our approach in the context of an educational game called Parallel to teach parallel and concurrent programming with data collected from real users, showing our approach can predict students skills with a low mean-squared error.
With the rapid development in online education, knowledge tracing (KT) has become a fundamental problem which traces students knowledge status and predicts their performance on new questions. Questions are often numerous in online education systems, and are always associated with much fewer skills. However, the previous literature fails to involve question information together with high-order question-skill correlations, which is mostly limited by data sparsity and multi-skill problems. From the model perspective, previous models can hardly capture the long-term dependency of student exercise history, and cannot model the interactions between student-questions, and student-skills in a consistent way. In this paper, we propose a Graph-based Interaction model for Knowledge Tracing (GIKT) to tackle the above probems. More specifically, GIKT utilizes graph convolutional network (GCN) to substantially incorporate question-skill correlations via embedding propagation. Besides, considering that relevant questions are usually scattered throughout the exercise history, and that question and skill are just different instantiations of knowledge, GIKT generalizes the degree of students master of the question to the interactions between the students current state, the students history related exercises, the target question, and related skills. Experiments on three datasets demonstrate that GIKT achieves the new state-of-the-art performance, with at least 1% absolute AUC improvement.
High-quality education is one of the keys to achieving a more sustainable world. The recent COVID-19 epidemic has triggered the outbreak of online education, which has enabled both students and teachers to learn and teach at home. Meanwhile, it is now possible to record and research a large amount of learning data using online learning platforms in order to offer better intelligent educational services. Knowledge Tracing (KT), which aims to monitor students evolving knowledge state, is a fundamental and crucial task to support these intelligent services. Therefore, an increasing amount of research attention has been paid to this emerging area and considerable progress has been made. In this survey, we propose a new taxonomy of existing basic KT models from a technical perspective and provide a comprehensive overview of these models in a systematic manner. In addition, many variants of KT models have been proposed to capture more complete learning process. We then review these variants involved in three phases of the learning process: before, during, and after the student learning, respectively. Moreover, we present several typical applications of KT in different educational scenarios. Finally, we provide some potential directions for future research in this fast-growing field.
Most of the prior work on multi-agent reinforcement learning (MARL) achieves optimal collaboration by directly controlling the agents to maximize a common reward. In this paper, we aim to address this from a different angle. In particular, we consider scenarios where there are self-interested agents (i.e., worker agents) which have their own minds (preferences, intentions, skills, etc.) and can not be dictated to perform tasks they do not wish to do. For achieving optimal coordination among these agents, we train a super agent (i.e., the manager) to manage them by first inferring their minds based on both current and past observations and then initiating contracts to assign suitable tasks to workers and promise to reward them with corresponding bonuses so that they will agree to work together. The objective of the manager is maximizing the overall productivity as well as minimizing payments made to the workers for ad-hoc worker teaming. To train the manager, we propose Mind-aware Multi-agent Management Reinforcement Learning (M^3RL), which consists of agent modeling and policy learning. We have evaluated our approach in two environments, Resource Collection and Crafting, to simulate multi-agent management problems with various task settings and multiple designs for the worker agents. The experimental results have validated the effectiveness of our approach in modeling worker agents minds online, and in achieving optimal ad-hoc teaming with good generalization and fast adaptation.