Do you want to publish a course? Click here

Relation-aware Compositional Zero-shot Learning for Attribute-Object Pair Recognition

82   0   0.0 ( 0 )
 Added by Ziwei Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper proposes a novel model for recognizing images with composite attribute-object concepts, notably for composite concepts that are unseen during model training. We aim to explore the three key properties required by the task --- relation-aware, consistent, and decoupled --- to learn rich and robust features for primitive concepts that compose attribute-object pairs. To this end, we propose the Blocked Message Passing Network (BMP-Net). The model consists of two modules. The concept module generates semantically meaningful features for primitive concepts, whereas the visual module extracts visual features for attributes and objects from input images. A message passing mechanism is used in the concept module to capture the relations between primitive concepts. Furthermore, to prevent the model from being biased towards seen composite concepts and reduce the entanglement between attributes and objects, we propose a blocking mechanism that equalizes the information available to the model for both seen and unseen concepts. Extensive experiments and ablation studies on two benchmarks show the efficacy of the proposed model.



rate research

Read More

Chinese characters have a huge set of character categories, more than 20,000 and the number is still increasing as more and more novel characters continue being created. However, the enormous characters can be decomposed into a compact set of about 500 fundamental and structural radicals. This paper introduces a novel radical analysis network (RAN) to recognize printed Chinese characters by identifying radicals and analyzing two-dimensional spatial structures among them. The proposed RAN first extracts visual features from input by employing convolutional neural networks as an encoder. Then a decoder based on recurrent neural networks is employed, aiming at generating captions of Chinese characters by detecting radicals and two-dimensional structures through a spatial attention mechanism. The manner of treating a Chinese character as a composition of radicals rather than a single character class largely reduces the size of vocabulary and enables RAN to possess the ability of recognizing unseen Chinese character classes, namely zero-shot learning.
In this paper, we study the problem of recognizing compositional attribute-object concepts within the zero-shot learning (ZSL) framework. We propose an episode-based cross-attention (EpiCA) network which combines merits of cross-attention mechanism and episode-based training strategy to recognize novel compositional concepts. Firstly, EpiCA bases on cross-attention to correlate concept-visual information and utilizes the gated pooling layer to build contextualized representations for both images and concepts. The updated representations are used for a more in-depth multi-modal relevance calculation for concept recognition. Secondly, a two-phase episode training strategy, especially the transductive phase, is adopted to utilize unlabeled test examples to alleviate the low-resource learning problem. Experiments on two widely-used zero-shot compositional learning (ZSCL) benchmarks have demonstrated the effectiveness of the model compared with recent approaches on both conventional and generalized ZSCL settings.
From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated attribute localization ability would be beneficial for zero-shot learning. To this end, we propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features using only class-level attributes. While a visual-semantic embedding layer learns global features, local features are learned through an attribute prototype network that simultaneously regresses and decorrelates attributes from intermediate features. We show that our locality augmented image representations achieve a new state-of-the-art on three zero-shot learning benchmarks. As an additional benefit, our model points to the visual evidence of the attributes in an image, e.g. for the CUB dataset, confirming the improved attribute localization ability of our image representation.
In compositional zero-shot learning, the goal is to recognize unseen compositions (e.g. old dog) of observed visual primitives states (e.g. old, cute) and objects (e.g. car, dog) in the training set. This is challenging because the same state can for example alter the visual appearance of a dog drastically differently from a car. As a solution, we propose a novel graph formulation called Compositional Graph Embedding (CGE) that learns image features, compositional classifiers, and latent representations of visual primitives in an end-to-end manner. The key to our approach is exploiting the dependency between states, objects, and their compositions within a graph structure to enforce the relevant knowledge transfer from seen to unseen compositions. By learning a joint compatibility that encodes semantics between concepts, our model allows for generalization to unseen compositions without relying on an external knowledge base like WordNet. We show that in the challenging generalized compositional zero-shot setting our CGE significantly outperforms the state of the art on MIT-States and UT-Zappos. We also propose a new benchmark for this task based on the recent GQA dataset. Code is available at: https://github.com/ExplainableML/czsl
One of the key limitations of modern deep learning approaches lies in the amount of data required to train them. Humans, by contrast, can learn to recognize novel categories from just a few examples. Instrumental to this rapid learning ability is the compositional structure of concept representations in the human brain --- something that deep learning models are lacking. In this work, we make a step towards bridging this gap between human and machine learning by introducing a simple regularization technique that allows the learned representation to be decomposable into parts. Our method uses category-level attribute annotations to disentangle the feature space of a network into subspaces corresponding to the attributes. These attributes can be either purely visual, like object parts, or more abstract, like openness and symmetry. We demonstrate the value of compositional representations on three datasets: CUB-200-2011, SUN397, and ImageNet, and show that they require fewer examples to learn classifiers for novel categories.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا