Do you want to publish a course? Click here

Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for Autonomous Driving

127   0   0.0 ( 0 )
 Added by Kemiao Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time. This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications. The novelty of this work includes: (1) development of an end-to-end deep neural network for joint object detection and correlation using 2D and 3D measurements; (2) development of a robust affinity computation module to compute occlusion-aware appearance and motion affinities in 3D space; (3) development of a comprehensive data association module for joint optimization among detection confidences, affinities and start-end probabilities. The experiment results on the KITTI tracking benchmark demonstrate the superior performance of the proposed method in terms of both tracking accuracy and processing speed.

rate research

Read More

Multi-object tracking is an important ability for an autonomous vehicle to safely navigate a traffic scene. Current state-of-the-art follows the tracking-by-detection paradigm where existing tracks are associated with detected objects through some distance metric. The key challenges to increase tracking accuracy lie in data association and track life cycle management. We propose a probabilistic, multi-modal, multi-object tracking system consisting of different trainable modules to provide robust and data-driven tracking results. First, we learn how to fuse features from 2D images and 3D LiDAR point clouds to capture the appearance and geometric information of an object. Second, we propose to learn a metric that combines the Mahalanobis and feature distances when comparing a track and a new detection in data association. And third, we propose to learn when to initialize a track from an unmatched object detection. Through extensive quantitative and qualitative results, we show that our method outperforms current state-of-the-art on the NuScenes Tracking dataset.
3D multi-object tracking in LiDAR point clouds is a key ingredient for self-driving vehicles. Existing methods are predominantly based on the tracking-by-detection pipeline and inevitably require a heuristic matching step for the detection association. In this paper, we present SimTrack to simplify the hand-crafted tracking paradigm by proposing an end-to-end trainable model for joint detection and tracking from raw point clouds. Our key design is to predict the first-appear location of each object in a given snippet to get the tracking identity and then update the location based on motion estimation. In the inference, the heuristic matching step can be completely waived by a simple read-off operation. SimTrack integrates the tracked object association, newborn object detection, and dead track killing in a single unified model. We conduct extensive evaluations on two large-scale datasets: nuScenes and Waymo Open Dataset. Experimental results reveal that our simple approach compares favorably with the state-of-the-art methods while ruling out the heuristic matching rules.
177 - Jianhao Jiao , Peng Yun , Lei Tai 2020
Extrinsic perturbation always exists in multiple sensors. In this paper, we focus on the extrinsic uncertainty in multi-LiDAR systems for 3D object detection. We first analyze the influence of extrinsic perturbation on geometric tasks with two basic examples. To minimize the detrimental effect of extrinsic perturbation, we propagate an uncertainty prior on each point of input point clouds, and use this information to boost an approach for 3D geometric tasks. Then we extend our findings to propose a multi-LiDAR 3D object detector called MLOD. MLOD is a two-stage network where the multi-LiDAR information is fused through various schemes in stage one, and the extrinsic perturbation is handled in stage two. We conduct extensive experiments on a real-world dataset, and demonstrate both the accuracy and robustness improvement of MLOD. The code, data and supplementary materials are available at: https://ram-lab.com/file/site/mlod
The strong demand of autonomous driving in the industry has lead to strong interest in 3D object detection and resulted in many excellent 3D object detection algorithms. However, the vast majority of algorithms only model single-frame data, ignoring the temporal information of the sequence of data. In this work, we propose a new transformer, called Temporal-Channel Transformer, to model the spatial-temporal domain and channel domain relationships for video object detecting from Lidar data. As a special design of this transformer, the information encoded in the encoder is different from that in the decoder, i.e. the encoder encodes temporal-channel information of multiple frames while the decoder decodes the spatial-channel information for the current frame in a voxel-wise manner. Specifically, the temporal-channel encoder of the transformer is designed to encode the information of different channels and frames by utilizing the correlation among features from different channels and frames. On the other hand, the spatial decoder of the transformer will decode the information for each location of the current frame. Before conducting the object detection with detection head, the gate mechanism is deployed for re-calibrating the features of current frame, which filters out the object irrelevant information by repetitively refine the representation of target frame along with the up-sampling process. Experimental results show that we achieve the state-of-the-art performance in grid voxel-based 3D object detection on the nuScenes benchmark.
With autonomous driving developing in a booming stage, accurate object detection in complex scenarios attract wide attention to ensure the safety of autonomous driving. Millimeter wave (mmWave) radar and vision fusion is a mainstream solution for accurate obstacle detection. This article presents a detailed survey on mmWave radar and vision fusion based obstacle detection methods. Firstly, we introduce the tasks, evaluation criteria and datasets of object detection for autonomous driving. Then, the process of mmWave radar and vision fusion is divided into three parts: sensor deployment, sensor calibration and sensor fusion, which are reviewed comprehensively. Especially, we classify the fusion methods into data level, decision level and feature level fusion methods. Besides, we introduce the fusion of lidar and vision in autonomous driving in the aspects of obstacle detection, object classification and road segmentation, which is promising in the future. Finally, we summarize this article.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا