Do you want to publish a course? Click here

Lifelong Intent Detection via Multi-Strategy Rebalancing

102   0   0.0 ( 0 )
 Added by Qingbin Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Conventional Intent Detection (ID) models are usually trained offline, which relies on a fixed dataset and a predefined set of intent classes. However, in real-world applications, online systems usually involve continually emerging new user intents, which pose a great challenge to the offline training paradigm. Recently, lifelong learning has received increasing attention and is considered to be the most promising solution to this challenge. In this paper, we propose Lifelong Intent Detection (LID), which continually trains an ID model on new data to learn newly emerging intents while avoiding catastrophically forgetting old data. Nevertheless, we find that existing lifelong learning methods usually suffer from a serious imbalance between old and new data in the LID task. Therefore, we propose a novel lifelong learning method, Multi-Strategy Rebalancing (MSR), which consists of cosine normalization, hierarchical knowledge distillation, and inter-class margin loss to alleviate the multiple negative effects of the imbalance problem. Experimental results demonstrate the effectiveness of our method, which significantly outperforms previous state-of-the-art lifelong learning methods on the ATIS, SNIPS, HWU64, and CLINC150 benchmarks.

rate research

Read More

In this paper, we study the few-shot multi-label classification for user intent detection. For multi-label intent detection, state-of-the-art work estimates label-instance relevance scores and uses a threshold to select multiple associated intent labels. To determine appropriate thresholds with only a few examples, we first learn universal thresholding experience on data-rich domains, and then adapt the thresholds to certain few-shot domains with a calibration based on nonparametric learning. For better calculation of label-instance relevance score, we introduce label name embedding as anchor points in representation space, which refines representations of different classes to be well-separated from each other. Experiments on two datasets show that the proposed model significantly outperforms strong baselines in both one-shot and five-shot settings.
Intent detection and slot filling are two main tasks in natural language understanding (NLU) for identifying users needs from their utterances. These two tasks are highly related and often trained jointly. However, most previous works assume that each utterance only corresponds to one intent, ignoring the fact that a user utterance in many cases could include multiple intents. In this paper, we propose a novel Self-Distillation Joint NLU model (SDJN) for multi-intent NLU. First, we formulate multiple intent detection as a weakly supervised problem and approach with multiple instance learning (MIL). Then, we design an auxiliary loop via self-distillation with three orderly arranged decoders: Initial Slot Decoder, MIL Intent Decoder, and Final Slot Decoder. The output of each decoder will serve as auxiliary information for the next decoder. With the auxiliary knowledge provided by the MIL Intent Decoder, we set Final Slot Decoder as the teacher model that imparts knowledge back to Initial Slot Decoder to complete the loop. The auxiliary loop enables intents and slots to guide mutually in-depth and further boost the overall NLU performance. Experimental results on two public multi-intent datasets indicate that our model achieves strong performance compared to others.
Modern task-oriented dialog systems need to reliably understand users intents. Intent detection is most challenging when moving to new domains or new languages, since there is little annotated data. To address this challenge, we present a suite of pretrained intent detection models. Our models are able to predict a broad range of intended goals from many actions because they are trained on wikiHow, a comprehensive instructional website. Our models achieve state-of-the-art results on the Snips dataset, the Schema-Guided Dialogue dataset, and all 3 languages of the Facebook multilingual dialog datasets. Our models also demonstrate strong zero- and few-shot performance, reaching over 75% accuracy using only 100 training examples in all datasets.
In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.
106 - Qingyi Si , Yuanxin Liu , Peng Fu 2020
Zero-shot intent detection (ZSID) aims to deal with the continuously emerging intents without annotated training data. However, existing ZSID systems suffer from two limitations: 1) They are not good at modeling the relationship between seen and unseen intents. 2) They cannot effectively recognize unseen intents under the generalized intent detection (GZSID) setting. A critical problem behind these limitations is that the representations of unseen intents cannot be learned in the training stage. To address this problem, we propose a novel framework that utilizes unseen class labels to learn Class-Transductive Intent Representations (CTIR). Specifically, we allow the model to predict unseen intents during training, with the corresponding label names serving as input utterances. On this basis, we introduce a multi-task learning objective, which encourages the model to learn the distinctions among intents, and a similarity scorer, which estimates the connections among intents more accurately. CTIR is easy to implement and can be integrated with existing methods. Experiments on two real-world datasets show that CTIR brings considerable improvement to the baseline systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا