No Arabic abstract
For the past ten years, CNN has reigned supreme in the world of computer vision, but recently, Transformer is on the rise. However, the quadratic computational cost of self-attention has become a severe problem of practice. There has been much research on architectures without CNN and self-attention in this context. In particular, MLP-Mixer is a simple idea designed using MLPs and hit an accuracy comparable to the Vision Transformer. However, the only inductive bias in this architecture is the embedding of tokens. Thus, there is still a possibility to build a non-convolutional inductive bias into the architecture itself, and we built in an inductive bias using two simple ideas. A way is to divide the token-mixing block vertically and horizontally. Another way is to make spatial correlations denser among some channels of token-mixing. With this approach, we were able to improve the accuracy of the MLP-Mixer while reducing its parameters and computational complexity. Compared to other MLP-based models, the proposed model, named RaftMLP has a good balance of computational complexity, the number of parameters, and actual memory usage. In addition, our work indicates that MLP-based models have the potential to replace CNNs by adopting inductive bias. The source code in PyTorch version is available at url{https://github.com/okojoalg/raft-mlp}.
Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks, such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied independently to image patches (i.e. mixing the per-location features), and one with MLPs applied across patches (i.e. mixing spatial information). When trained on large datasets, or with modern regularization schemes, MLP-Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable to state-of-the-art models. We hope that these results spark further research beyond the realms of well established CNNs and Transformers.
This paper introduces a novel method for the representation of images that is semantic by nature, addressing the question of computation intelligibility in computer vision tasks. More specifically, our proposition is to introduce what we call a semantic bottleneck in the processing pipeline, which is a crossing point in which the representation of the image is entirely expressed with natural language , while retaining the efficiency of numerical representations. We show that our approach is able to generate semantic representations that give state-of-the-art results on semantic content-based image retrieval and also perform very well on image classification tasks. Intelligibility is evaluated through user centered experiments for failure detection.
This paper presents Hire-MLP, a simple yet competitive vision MLP architecture via hierarchical rearrangement. Previous vision MLPs like MLP-Mixer are not flexible for various image sizes and are inefficient to capture spatial information by flattening the tokens. Hire-MLP innovates the existing MLP-based models by proposing the idea of hierarchical rearrangement to aggregate the local and global spatial information while being versatile for downstream tasks. Specifically, the inner-region rearrangement is designed to capture local information inside a spatial region. Moreover, to enable information communication between different regions and capture global context, the cross-region rearrangement is proposed to circularly shift all tokens along spatial directions. The proposed Hire-MLP architecture is built with simple channel-mixing MLPs and rearrangement operations, thus enjoys high flexibility and inference speed. Experiments show that our Hire-MLP achieves state-of-the-art performance on the ImageNet-1K benchmark. In particular, Hire-MLP achieves an 83.4% top-1 accuracy on ImageNet, which surpasses previous Transformer-based and MLP-based models with better trade-off for accuracy and throughput.
The representation of images in the brain is known to be sparse. That is, as neural activity is recorded in a visual area ---for instance the primary visual cortex of primates--- only a few neurons are active at a given time with respect to the whole population. It is believed that such a property reflects the efficient match of the representation with the statistics of natural scenes. Applying such a paradigm to computer vision therefore seems a promising approach towards more biomimetic algorithms. Herein, we will describe a biologically-inspired approach to this problem. First, we will describe an unsupervised learning paradigm which is particularly adapted to the efficient coding of image patches. Then, we will outline a complete multi-scale framework ---SparseLets--- implementing a biologically inspired sparse representation of natural images. Finally, we will propose novel methods for integrating prior information into these algorithms and provide some preliminary experimental results. We will conclude by giving some perspective on applying such algorithms to computer vision. More specifically, we will propose that bio-inspired approaches may be applied to computer vision using predictive coding schemes, sparse models being one simple and efficient instance of such schemes.
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data. Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or even superior performance on image classification tasks. This raises a central question: how are Vision Transformers solving these tasks? Are they acting like convolutional networks, or learning entirely different visual representations? Analyzing the internal representation structure of ViTs and CNNs on image classification benchmarks, we find striking differences between the two architectures, such as ViT having more uniform representations across all layers. We explore how these differences arise, finding crucial roles played by self-attention, which enables early aggregation of global information, and ViT residual connections, which strongly propagate features from lower to higher layers. We study the ramifications for spatial localization, demonstrating ViTs successfully preserve input spatial information, with noticeable effects from different classification methods. Finally, we study the effect of (pretraining) dataset scale on intermediate features and transfer learning, and conclude with a discussion on connections to new architectures such as the MLP-Mixer.