Do you want to publish a course? Click here

First follow-up of transient events with the CTA Large Size Telescope prototype

212   0   0.0 ( 0 )
 Added by Alessandro Carosi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent detection of a very high energy (VHE) emission from Gamma-Ray Bursts (GRBs) above 100 GeV performed by the MAGIC and H.E.S.S. collaborations, has represented a significant, long-awaited result for the VHE astrophysics community. Although these results scientific impact has not yet been fully exploited, the possibility to detect VHE gamma-ray signals from GRBs has always been considered crucial for clarifying the poorly known physics of these objects. Furthermore, the discovery of high-energy neutrinos and gravitational waves associated with astrophysical sources have definitively opened the era of multi-messenger astrophysics, providing unique insights into the physics of extreme cosmic accelerators. In the near future, the Cherenkov Telescope Array (CTA) will play a major role in these observations. Within this framework, the Large Size Telescopes (LSTs) will be the instruments best suited to significantly impact on short time-scale transients follow-up thanks to their fast slewing and large effective area. The observations of the early emission phase of a wide range of transient events with good sensitivity below 100 GeV will allow us to open new opportunities for time-domain astrophysics in an energy range not affected by selective absorption processes typical of other wavelengths. In this contribution, we will report about the observational program and first transients follow-up observations performed by the LST-1 telescope currently in its commissioning phase on La Palma, Canary Islands, the CTA northern hemisphere site.



rate research

Read More

114 - Juergen Baehr 2012
We present here the status of the medium size prototype for the Cherenkov Telescope Array. The main reasons to build the prototype are the test of the steel structure, the training of various mounting operations, the test of the drive system and the test of the safety system. The essential difference between the medium size telescope prototype and a fully instrumented are that the camera is not instrumented and only a part of the mounted mirrors are optical mirrors. Insofar no high energy gamma rays can be detected by the prototype telescope. The prototype will be setup in autumn 2012 in Berlin.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
Ground-based gamma-ray astronomy aims at reconstructing the energy and direction of gamma rays from the extensive air showers they initiate in the atmosphere. Imaging Atmospheric Cherenkov Telescopes (IACT) collect the Cherenkov light induced by secondary charged particles in extensive air showers (EAS), creating an image of the shower in a camera positioned in the focal plane of optical systems. This image is used to evaluate the type, energy and arrival direction of the primary particle that initiated the shower. This contribution shows the results of a novel reconstruction method based on likelihood maximization. The novelty with respect to previous likelihood reconstruction methods lies in the definition of a likelihood per single camera pixel, accounting not only for the total measured charge, but also for its development over time. This leads to more precise reconstruction of shower images. The method is applied to observations of the Crab Nebula acquired with the Large Size Telescope prototype (LST-1) deployed at the northern site of the Cherenkov Telescope Array.
We present here, follow-up observations of four Binary black hole BBH events performed with the High Energy Stereoscopic System (H.E.S.S.) in the Very High Energy (VHE) gamma-ray domain during the second and third LIGO/Virgo observation runs. Detailed analyses of the obtained data did not show significant VHE emission. We derive integral upper limit maps considering a generic $E^{-2}$ source spectrum in the most sensitive H.E.S.S energy interval ranging from 1 to 10 TeV. We also consider Extragalactic Background Light absorption effects and derive integral upper limits over the full accessible energy range. We finally derive upper limits of the VHE luminosity for each event and compare them with the expected VHE emission from GRBs. These comparisons allow us to assess the H.E.S.S. gravitational wave follow-up strategies. For the fourth GW observing run O4, we do not expect to fundamentally alter our observing strategy, and will continue to prioritize sky coverage like for the previous runs
The high-energy muon neutrino events of the IceCube telescope, that are triggered as neutrino alerts in one of two probability ranks of astrophysical origin, gold and bronze, have been followed up by the Baikal-GVD in a fast quasi-online mode since September 2020. Search for correlations between alerts and GVD events reconstructed in two modes, muon-track and electromagnetic shower (cascade), for the time windows $ pm $ 1 h and $ pm $ 12 h does not indicate statistically significant excess of the measured events over the expected number of background events. Upper limits on the neutrino fluence will be presented for each alert.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا