No Arabic abstract
Andrews and Merca investigated a truncated version of Eulers pentagonal number theorem and showed that the coefficients of the truncated series are nonnegative. They also considered the truncated series arising from Jacobis triple product identity, and they that its coefficients are nonnegative. This conjecture was posed by Guo and Zeng independently and confirmed by Mao and Yee using different approaches. In this paper, we provide a new combinatorial proof of their nonnegativity result related to Eulers pentagonal number theorem. Meanwhile, we find an analogous result for a truncated series arising from Jacobis triple product identity in a different manner.
In this paper we introduce the so-called truncated very-well-poised $_6psi_6$ series and set up an explicit recurrence relation for it by means of the classical Abel lemma on summation by parts. This new recurrence relation implies an elementary proof of Baileys well-known $_6psi_6$ summation formula.
We continue our study on counting irreducible polynomials over a finite field with prescribed coefficients. We set up a general combinatorial framework using generating functions with coefficients from a group algebra which is generated by equivalent classes of polynomials with prescribed coefficients. Simplified expressions are derived for some special cases. Our results extend some earlier results.
We establish a congruence on sums of central $q$-binomial coefficients. From this $q$-congruence, we derive the divisibility of the $q$-trinomial coefficients introduced by Andrews and Baxter.
We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assafs theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Grassmannian.
We study some sum-product problems over matrix rings. Firstly, for $A, B, Csubseteq M_n(mathbb{F}_q)$, we have $$ |A+BC|gtrsim q^{n^2}, $$ whenever $|A||B||C|gtrsim q^{3n^2-frac{n+1}{2}}$. Secondly, if a set $A$ in $M_n(mathbb{F}_q)$ satisfies $|A|geq C(n)q^{n^2-1}$ for some sufficiently large $C(n)$, then we have $$ max{|A+A|, |AA|}gtrsim minleft{frac{|A|^2}{q^{n^2-frac{n+1}{4}}}, q^{n^2/3}|A|^{2/3}right}. $$ These improve the results due to The and Vinh (2020), and generalize the results due to Mohammadi, Pham, and Wang (2021). We also give a new proof for a recent result due to The and Vinh (2020). Our method is based on spectral graph theory and linear algebra.