Do you want to publish a course? Click here

Sign Changes of Coefficients of Powers of the Infinite Borwein Product

90   0   0.0 ( 0 )
 Added by Liuquan Wang
 Publication date 2021
  fields
and research's language is English
 Authors Liuquan Wang




Ask ChatGPT about the research

We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymptotic formula for $c_t^{(m)}(n)$, and give characterizations of $n$ for which $c_t^{(m)}(n)$ is positive, negative or zero. We show that $c_t^{(m)}(n)$ is ultimately periodic in sign and conjecture that this is still true for other positive integer values of $t$ and $m$. Furthermore, we confirm this conjecture in the cases $(t,m)=(2,m),(p,1),(p,3)$ for arbitrary positive integer $m$ and prime $p$.



rate research

Read More

We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applications, we prove that there are sign changes in intervals within sequences of coefficients of GL(2) holomorphic cusp forms, GL(2) Maass forms, and GL(3) Maass forms. Building on previous works by the authors, we prove that there are sign changes in intervals within sequences of partial sums of coefficients of GL(2) holomorphic cusp forms and Maass forms.
In this paper, we study properties of the coefficients appearing in the $q$-series expansion of $prod_{nge 1}[(1-q^n)/(1-q^{pn})]^delta$, the infinite Borwein product for an arbitrary prime $p$, raised to an arbitrary positive real power $delta$. We use the Hardy--Ramanujan--Rademacher circle method to give an asymptotic formula for the coefficients. For $p=3$ we give an estimate of their growth which enables us to partially confirm an earlier conjecture of the first author concerning an observed sign pattern of the coefficients when the exponent $delta$ is within a specified range of positive real numbers. We further establish some vanishing and divisibility properties of the coefficients of the cube of the infinite Borwein product. We conclude with an Appendix presenting several new conjectures on precise sign patterns of infinite products raised to a real power which are similar to the conjecture we made in the $p=3$ case.
83 - David Lowry-Duda 2021
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher and Murty, we show that there are at least $X^{frac{1}{4} - epsilon}$ sign changes in each interval $[X, 2X]$ for $X gg 1$. This improves to $X^{frac{1}{2} - epsilon}$ many sign changes assuming the Generalized Lindel{o}f Hypothesis.
For a given sequence $mathbf{alpha} = [alpha_1,alpha_2,dots,alpha_{N+1}]$ of $N+1$ positive integers, we consider the combinatorial function $E(mathbf{alpha})(t)$ that counts the nonnegative integer solutions of the equation $alpha_1x_1+alpha_2 x_2+cdots+alpha_{N} x_{N}+alpha_{N+1}x_{N+1}=t$, where the right-hand side $t$ is a varying nonnegative integer. It is well-known that $E(mathbf{alpha})(t)$ is a quasi-polynomial function in the variable $t$ of degree $N$. In combinatorial number theory this function is known as Sylvesters denumerant. Our main result is a new algorithm that, for every fixed number $k$, computes in polynomial time the highest $k+1$ coefficients of the quasi-polynomial $E(mathbf{alpha})(t)$ as step polynomials of $t$ (a simpler and more explicit representation). Our algorithm is a consequence of a nice poset structure on the poles of the associated rational generating function for $E(mathbf{alpha})(t)$ and the geometric reinterpretation of some rational generating functions in terms of lattice points in polyhedral cones. Our algorithm also uses Barvinoks fundamental fast decomposition of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm to predict the first non-constant coefficient and concludes with a report of several computational experiments using an implementation of our algorithm in LattE integrale. We compare it with various Maple programs for partial or full computation of the denumerant.
204 - Koji Momihara 2020
In the past two decades, many researchers have studied {it index $2$} Gauss sums, where the group generated by the characteristic $p$ of the underling finite field is of index $2$ in the unit group of ${mathbb Z}/m{mathbb Z}$ for the order $m$ of the multiplicative character involved. A complete solution to the problem of evaluating index $2$ Gauss sums was given by Yang and Xia~(2010). In particular, it is known that some nonzero integral powers of the Gauss sums in this case are in quadratic fields. On the other hand, Chowla~(1962), McEliece~(1974), Evans~(1977, 1981) and Aoki~(1997, 2004, 2012) studied {it pure} Gauss sums, some nonzero integral powers of which are in the field of rational numbers. In this paper, we study Gauss sums, some integral powers of which are in quadratic fields. This class of Gauss sums is a generalization of index $2$ Gauss sums and an extension of pure Gauss sums to quadratic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا