Do you want to publish a course? Click here

Sign Changes of Coefficients and Sums of Coefficients of L-Functions

165   0   0.0 ( 0 )
 Added by Thomas Hulse
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We extend the axiomatization for detecting and quantifying sign changes of Meher and Murty to sequences of complex numbers. We further generalize this result when the sequence is comprised of the coefficients of an $L$-function. As immediate applications, we prove that there are sign changes in intervals within sequences of coefficients of GL(2) holomorphic cusp forms, GL(2) Maass forms, and GL(3) Maass forms. Building on previous works by the authors, we prove that there are sign changes in intervals within sequences of partial sums of coefficients of GL(2) holomorphic cusp forms and Maass forms.



rate research

Read More

83 - David Lowry-Duda 2021
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher and Murty, we show that there are at least $X^{frac{1}{4} - epsilon}$ sign changes in each interval $[X, 2X]$ for $X gg 1$. This improves to $X^{frac{1}{2} - epsilon}$ many sign changes assuming the Generalized Lindel{o}f Hypothesis.
89 - Liuquan Wang 2021
We denote by $c_t^{(m)}(n)$ the coefficient of $q^n$ in the series expansion of $(q;q)_infty^m(q^t;q^t)_infty^{-m}$, which is the $m$-th power of the infinite Borwein product. Let $t$ and $m$ be positive integers with $m(t-1)leq 24$. We provide asymptotic formula for $c_t^{(m)}(n)$, and give characterizations of $n$ for which $c_t^{(m)}(n)$ is positive, negative or zero. We show that $c_t^{(m)}(n)$ is ultimately periodic in sign and conjecture that this is still true for other positive integer values of $t$ and $m$. Furthermore, we confirm this conjecture in the cases $(t,m)=(2,m),(p,1),(p,3)$ for arbitrary positive integer $m$ and prime $p$.
121 - Bingrong Huang , Yongxiao Lin , 2020
In this note, we give a detailed proof of an asymptotic for averages of coefficients of a class of degree three $L$-functions which can be factorized as a product of a degree one and a degree two $L$-functions. We emphasize that we can break the $1/2$-barrier in the error term, and we get an explicit exponent.
We produce nontrivial asymptotic estimates for shifted sums of the form $sum a(h)b(m)c(2m-h)$, in which $a(n),b(n),c(n)$ are un-normalized Fourier coefficients of holomorphic cusp forms. These results are unconditional, but we demonstrate how to strengthen them under the Riemann Hypothesis. As an application, we show that there are infinitely many three term arithmetic progressions $n-h, n, n+h$ such that $a(n-h)a(n)a(n+h) eq 0$.
We propose higher-order generalizations of Jacobsthals $p$-adic approximation for binomial coefficients. Our results imply explicit formulae for linear combinations of binomial coefficients $binom{ip}{p}$ ($i=1,2,dots$) that are divisible by arbitrarily large powers of prime $p$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا