Do you want to publish a course? Click here

Dynamic Balancing of Humanoid Robot Walker3 with Proprioceptive Actuation: Systematic Design of Algorithm, Software and Hardware

318   0   0.0 ( 0 )
 Added by Yan Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Dynamic balancing under uncertain disturbances is important for a humanoid robot, which requires a good capability of coordinating the entire body redundancy to execute multi tasks. Whole-body control (WBC) based on hierarchical optimization has been generally accepted and utilized in torque-controlled robots. A good hierarchy is the prerequisite for WBC and can be predefined according to prior knowledge. However, the real-time computation would be problematic in the physical applications considering the computational complexity of WBC. For robots with proprioceptive actuation, the joint friction in gear reducer would also degrade the torque tracking performance. In our paper, a reasonable hierarchy of tasks and constraints is first customized for robot dynamic balancing. Then a real-time WBC is implemented via a computationally efficient WBC software. Such a method is solved on a modular master control system UBTMaster characterized by the real-time communication and powerful computing capability. After the joint friction being well covered by the model identification, extensive experiments on various balancing scenarios are conducted on a humanoid Walker3 with proprioceptive actuation. The robot shows an outstanding balance performance even under external impulses as well as the two feet of the robot suffering the inclination and shift disturbances independently. The results demonstrate that with the strict hierarchy, real-time computation and joint friction being handled carefully, the robot with proprioceptive actuation can manage the dynamic physical interactions with the unstructured environments well.



rate research

Read More

Achieving short-distance flight helps improve the efficiency of humanoid robots moving in complex environments (e.g., crossing large obstacles or reaching high places) for rapid emergency missions. This study proposes a design of a flying humanoid robot named Jet-HR2. The robot has 10 joints driven by brushless motors and harmonic drives for locomotion. To overcome the challenge of the stable-attitude takeoff in small thrust-to-weight conditions, the robot was designed based on the concept of thrust vectoring. The propulsion system consists of four ducted fans, that is, two fixed on the waist of the robot and the other two mounted on the feet, for thrust vector control. The thrust vector is controlled by adjusting the attitude of the foot during the flight. A simplified model and control strategies are proposed to solve the problem of attitude instability caused by mass errors and joint position errors during takeoff. The experimental results show that the robots spin and dive behaviors during takeoff were effectively suppressed by controlling the thrust vector of the ducted fan on the foot. The robot successfully achieved takeoff at a thrust-to-weight ratio of 1.17 (17 kg / 20 kg) and maintained a stable attitude, reaching a takeoff height of over 1000 mm.
323 - Sunyu Wang , Joao Ramos 2021
Bilateral teleoperation provides humanoid robots with human planning intelligence while enabling the human to feel what the robot feels. It has the potential to transform physically capable humanoid robots into dynamically intelligent ones. However, dynamic bilateral locomotion teleoperation remains as a challenge due to the complex dynamics it involves. This work presents our initial step to tackle this challenge via the concept of wheeled humanoid robot locomotion teleoperation by body tilt. Specifically, we developed a force-feedback-capable whole-body human-machine interface (HMI), and designed a force feedback mapping and two teleoperation mappings that map the humans body tilt to the robots velocity or acceleration. We compared the two mappings and studied the force feedbacks effect via an experiment, where seven human subjects teleoperated a simulated robot with the HMI to perform dynamic target tracking tasks. The experimental results suggest that all subjects accomplished the tasks with both mappings after practice, and the force feedback improved their performances. However, the subjects exhibited two distinct teleoperation styles, which benefited from the force feedback differently. Moreover, the force feedback affected the subjects preferences on the teleoperation mappings, though most subjects performed better with the velocity mapping.
The hierarchical quadratic programming (HQP) is commonly applied to consider strict hierarchies of multi-tasks and robots physical inequality constraints during whole-body compliance. However, for the one-step HQP, the solution can oscillate when it is close to the boundary of constraints. It is because the abrupt hit of the bounds gives rise to unrealisable jerks and even infeasible solutions. This paper proposes the mixed control, which blends the single-axis model predictive control (MPC) and proportional derivate (PD) control for the whole-body compliance to overcome these deficiencies. The MPC predicts the distances between the bounds and the control target of the critical tasks, and it provides smooth and feasible solutions by prediction and optimisation in advance. However, applying MPC will inevitably increase the computation time. Therefore, to achieve a 500 Hz servo rate, the PD controllers still regulate other tasks to save computation resources. Also, we use a more efficient null space projection (NSP) whole-body controller instead of the HQP and distribute the single-axis MPCs into four CPU cores for parallel computation. Finally, we validate the desired capabilities of the proposed strategy via Simulations and the experiment on the humanoid robot Walker X.
We present a novel approach for interactive auditory object analysis with a humanoid robot. The robot elicits sensory information by physically shaking visually indistinguishable plastic capsules. It gathers the resulting audio signals from microphones that are embedded into the robotic ears. A neural network architecture learns from these signals to analyze properties of the contents of the containers. Specifically, we evaluate the material classification and weight prediction accuracy and demonstrate that the framework is fairly robust to acoustic real-world noise.
In the current level of evolution of Soccer 3D, motion control is a key factor in teams performance. Recent works takes advantages of model-free approaches based on Machine Learning to exploit robot dynamics in order to obtain faster locomotion skills, achieving running policies and, therefore, opening a new research direction in the Soccer 3D environment. In this work, we present a methodology based on Deep Reinforcement Learning that learns running skills without any prior knowledge, using a neural network whose inputs are related to robots dynamics. Our results outperformed the previous state-of-the-art sprint velocity reported in Soccer 3D literature by a significant margin. It also demonstrated improvement in sample efficiency, being able to learn how to run in just few hours. We reported our results analyzing the training procedure and also evaluating the policies in terms of speed, reliability and human similarity. Finally, we presented key factors that lead us to improve previous results and shared some ideas for future work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا