Do you want to publish a course? Click here

Rethinking of AlphaStar

57   0   0.0 ( 0 )
 Added by Ruo-Ze Liu
 Publication date 2021
and research's language is English
 Authors Ruo-Ze Liu




Ask ChatGPT about the research

We present a different view for AlphaStar (AS), the program achieving Grand-Master level in the game StarCraft II. It is considered big progress for AI research. However, in this paper, we present problems with the AS, some of which are the defects of it, and some of which are important details that are neglected in its article. These problems arise two questions. One is that what can we get from the built of AS? The other is that does the battle between it with humans fair? After the discussion, we present the future research directions for these problems. Our study is based on a reproduction code of the AS, and the codes are available online.



rate research

Read More

StarCraft II (SC2) is a real-time strategy game, in which players produce and control multiple units to win. Due to its difficulties, such as huge state space, various action space, a long time horizon, and imperfect information, SC2 has been a research highlight in reinforcement learning research. Recently, an SC2 agent called AlphaStar is proposed which shows excellent performance, obtaining a high win-rates of 99.8% against Grandmaster level human players. We implemented a mini-scaled version of it called mini-AlphaStar based on their paper and the pseudocode they provided. The usage and analysis of it are shown in this technical report. The difference between AlphaStar and mini-AlphaStar is that we substituted the hyper-parameters in the former version with much smaller ones for mini-scale training. The codes of mini-AlphaStar are all open-sourced. The objective of mini-AlphaStar is to provide a reproduction of the original AlphaStar and facilitate the future research of RL on large-scale problems.
In January 2019, DeepMind revealed AlphaStar to the world-the first artificial intelligence (AI) system to beat a professional player at the game of StarCraft II-representing a milestone in the progress of AI. AlphaStar draws on many areas of AI research, including deep learning, reinforcement learning, game theory, and evolutionary computation (EC). In this paper we analyze AlphaStar primarily through the lens of EC, presenting a new look at the system and relating it to many concepts in the field. We highlight some of its most interesting aspects-the use of Lamarckian evolution, competitive co-evolution, and quality diversity. In doing so, we hope to provide a bridge between the wider EC community and one of the most significant AI systems developed in recent times.
It is well noted that coordinate based MLPs benefit greatly -- in terms of preserving high-frequency information -- through the encoding of coordinate positions as an array of Fourier features. Hitherto, the rationale for the effectiveness of these positional encodings has been solely studied through a Fourier lens. In this paper, we strive to broaden this understanding by showing that alternative non-Fourier embedding functions can indeed be used for positional encoding. Moreover, we show that their performance is entirely determined by a trade-off between the stable rank of the embedded matrix and the distance preservation between embedded coordinates. We further establish that the now ubiquitous Fourier feature mapping of position is a special case that fulfills these conditions. Consequently, we present a more general theory to analyze positional encoding in terms of shifted basis functions. To this end, we develop the necessary theoretical formulae and empirically verify that our theoretical claims hold in practice. Codes available at https://github.com/osiriszjq/Rethinking-positional-encoding.
Video summarization is a technique to create a short skim of the original video while preserving the main stories/content. There exists a substantial interest in automatizing this process due to the rapid growth of the available material. The recent progress has been facilitated by public benchmark datasets, which enable easy and fair comparison of methods. Currently the established evaluation protocol is to compare the generated summary with respect to a set of reference summaries provided by the dataset. In this paper, we will provide in-depth assessment of this pipeline using two popular benchmark datasets. Surprisingly, we observe that randomly generated summaries achieve comparable or better performance to the state-of-the-art. In some cases, the random summaries outperform even the human generated summaries in leave-one-out experiments. Moreover, it turns out that the video segmentation, which is often considered as a fixed pre-processing method, has the most significant impact on the performance measure. Based on our observations, we propose alternative approaches for assessing the importance scores as well as an intuitive visualization of correlation between the estimated scoring and human annotations.
Backdoor attack intends to inject hidden backdoor into the deep neural networks (DNNs), such that the prediction of the infected model will be maliciously changed if the hidden backdoor is activated by the attacker-defined trigger, while it performs well on benign samples. Currently, most of existing backdoor attacks adopted the setting of emph{static} trigger, $i.e.,$ triggers across the training and testing images follow the same appearance and are located in the same area. In this paper, we revisit this attack paradigm by analyzing the characteristics of the static trigger. We demonstrate that such an attack paradigm is vulnerable when the trigger in testing images is not consistent with the one used for training. We further explore how to utilize this property for backdoor defense, and discuss how to alleviate such vulnerability of existing attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا