Do you want to publish a course? Click here

Magnetic properties of chiral EuIr$_2$P$_2$

584   0   0.0 ( 0 )
 Added by Pablo S. Cornaglia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a minimal model that provides a description of the magnetic and thermodynamic properties of Eu. The model contains two exchange coupling parameters, which are calculated using Density Functional Theory, and a local easy axis magnetic anisotropy term. The classical ground state of the system is a generalization of the well known 120$^circ$ structure observed in triangular antiferromagnets. Monte Carlo simulations show two phase transitions as a function of the temperature. With increasing temperature, the system transitions from the ground state into a high-entropy collinear antiferromagnet, which in turn at higher temperatures presents a second order transition to a paramagnetic state. A high enough external magnetic field parallel to the anisotropy axis produces a spin-flop transition at low temperatures. The field also reduces the temperature range of stability of the collinear antiferromagnet phase and leads to a single phase transition as a function of the temperature. The reported behavior of the specific heat, the magnetization, and the magnetic susceptibility is in agreement with the available experimental data. Finally, we present the magnetic phase diagrams for magnetic fields parallel and perpendicular to the easy axis.



rate research

Read More

We present a detailed study of the temperature evolution of the crystal structure, specific heat, magnetic susceptibility and resistivity of single crystals of the paradigmatic valence-fluctuating compound EuIr$_2$Si$_2$. A comparison to stable-valent isostructural compounds EuCo$_2$Si$_2$ (with Eu$^{3+}$), and EuRh$_2$Si$_2$, (with Eu$^{2+}$) reveals an anomalously large thermal expansion indicative of the lattice softening associated to valence fluctuations. A marked broad peak at temperatures around 65-75 K is observed in specific heat, susceptibility and the derivative of resistivity, as thermal energy becomes large enough to excite Eu into a divalent state, which localizes one f electron and increases scattering of conduction electrons. In addition, the intermediate valence at low temperatures manifests in a moderately renormalized electron mass, with enhanced values of the Sommerfeld coefficient in the specific heat and a Fermi-liquid-like dependence of resistivity at low temperatures. The high residual magnetic susceptibility is mainly ascribed to a Van Vleck contribution. Although the intermediate/fluctuating valence duality is to some extent represented in the interconfiguration fluctuation model commonly used to analyze data on valence-fluctuating systems, we show that this model cannot describe the different physical properties of EuIr$_2$Si$_2$ with a single set of parameters.
We report the anisotropic magnetic properties of the ternary compound ErAl$_2$Ge$_2$. Single crystals of this compound were grown by high temperature solution growth technique,using Al:Ge eutectic composition as flux. From the powder x-ray diffraction we confirmed that ErAl$_2$Ge$_2$ crystallizes in the trigonal CaAl$_2$Si$_2$-type crystal structure. The anisotropic magnetic properties of a single crystal were investigated by measuring the magnetic susceptibility, magnetization, heat capacity and electrical resistivity. A bulk magnetic ordering occurs around 4 K inferred from the magnetic susceptibility and the heat capacity. The magnetization measured along the $ab$-plane increases more rapidly than along the $c$-axis suggesting the basal $ab$-plane as the easy plane of magnetization. The magnetic susceptibility, magnetization and the $4f$-derived part of the heat capacity in the paramagnetic regime analysed based on the point charge model of the crystalline electric field (CEF) indicate a relatively low CEF energy level splitting.
The influence of 30 keV He$^+$ ion irradiation on structural, electronic and magnetic properties of Co$_2$MnSi thin films with B2 order was investigated. It was found, that irradiation with light ions can improve the local chemical order. This provokes changes of the electronic structure and element-specific magnetization towards the bulk properties of the well-ordered Co$_2$MnSi Heusler compound with L2$_1$ structure.
In order to study the phase diagram from a microscopic viewpoint, we have measured wTF- and ZF-$mu^+$SR spectra for the Sr$_{1-x}$Ca$_x$Co$_2$P$_2$ powder samples with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1. Due to a characteristic time window and spatial resolution of $mu^+$SR, the obtained phase diagram was found to be rather different from that determined by magnetization measurements. That is, as $x$ increases from 0, a Pauli-paramagnetic phase is observed even at the lowest $T$ measured (1.8~K) until $x=0.4$, then, a spin-glass like phase appears at $0.5leq xleq0.6$, and then, a phase with wide field distribution probably due to incommensurate AF order is detected for $x=0.8$, and finally, a commensurate $A$-type AF ordered phase (for $x=1$) is stabilized below $T_{rm N}sim80~$K. Such change is most likely reasonable and connected to the shrink of the $c$-axis length with $x$, which naturally enhances the magnetic interaction between the two adjacent Co planes.
Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, $textrm{EuFe}_{2}(textrm{As}_{1-x}textrm{P}_{x})_{2}$ (x = 0.23), were measured in pristine state and after different doses of 2.5 MeV electron or 3.5 MeV proton irradiation. The superconducting transition temperature, $T_{c}(H)$, shows an extraordinarily large decrease. It starts at $T_{c}(H=0)approx24:textrm{K}$ in the pristine sample for both AC and DC measurements, but moves to almost half of that value after moderate irradiation dose. Our results suggest that in $textrm{EuFe}_{2}(textrm{As}_{1-x}textrm{P}_{x})_{2}$ superconductivity is affected by local-moment ferromagnetism mostly via the spontaneous internal magnetic fields induced by the FM subsystem. Another mechanism is revealed upon irradiation where magnetic defects created in ordered $text{Eu}^{2+}$ lattice act as efficient pairbreakers leading to a significant $T_{c}$ reduction upon irradiation compared to other 122 compounds. On the other hand, the exchange interactions seem to be weakly screened by the superconducting phase leading to a modest increase of $T_{m}$ (less than 1 K) after the irradiation drives $T_{c}$ to below $T_{m}$. The results suggest that FM and SC phases coexist microscopically in the same volume.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا