Do you want to publish a course? Click here

Controllable Summarization with Constrained Markov Decision Process

136   0   0.0 ( 0 )
 Added by Hou Pong Chan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study controllable text summarization which allows users to gain control on a particular attribute (e.g., length limit) of the generated summaries. In this work, we propose a novel training framework based on Constrained Markov Decision Process (CMDP), which conveniently includes a reward function along with a set of constraints, to facilitate better summarization control. The reward function encourages the generation to resemble the human-written reference, while the constraints are used to explicitly prevent the generated summaries from violating user-imposed requirements. Our framework can be applied to control important attributes of summarization, including length, covered entities, and abstractiveness, as we devise specific constraints for each of these aspects. Extensive experiments on popular benchmarks show that our CMDP framework helps generate informative summaries while complying with a given attributes requirement.



rate research

Read More

Relevance in summarization is typically defined based on textual information alone, without incorporating insights about a particular decision. As a result, to support risk analysis of pancreatic cancer, summaries of medical notes may include irrelevant information such as a knee injury. We propose a novel problem, decision-focused summarization, where the goal is to summarize relevant information for a decision. We leverage a predictive model that makes the decision based on the full text to provide valuable insights on how a decision can be inferred from text. To build a summary, we then select representative sentences that lead to similar model decisions as using the full text while accounting for textual non-redundancy. To evaluate our method (DecSum), we build a testbed where the task is to summarize the first ten reviews of a restaurant in support of predicting its future rating on Yelp. DecSum substantially outperforms text-only summarization methods and model-based explanation methods in decision faithfulness and representativeness. We further demonstrate that DecSum is the only method that enables humans to outperform random chance in predicting which restaurant will be better rated in the future.
In this paper, we aim to improve abstractive dialogue summarization quality and, at the same time, enable granularity control. Our model has two primary components and stages: 1) a two-stage generation strategy that generates a preliminary summary sketch serving as the basis for the final summary. This summary sketch provides a weakly supervised signal in the form of pseudo-labeled interrogative pronoun categories and key phrases extracted using a constituency parser. 2) A simple strategy to control the granularity of the final summary, in that our model can automatically determine or control the number of generated summary sentences for a given dialogue by predicting and highlighting different text spans from the source text. Our model achieves state-of-the-art performance on the largest dialogue summarization corpus SAMSum, with as high as 50.79 in ROUGE-L score. In addition, we conduct a case study and show competitive human evaluation results and controllability to human-annotated summaries.
166 - Yuning Mao , Xiang Ren , Heng Ji 2020
Summaries generated by abstractive summarization are supposed to only contain statements entailed by the source documents. However, state-of-the-art abstractive methods are still prone to hallucinate content inconsistent with the source documents. In this paper, we propose constrained abstractive summarization (CAS), a general setup that preserves the factual consistency of abstractive summarization by specifying tokens as constraints that must be present in the summary. We explore the feasibility of using lexically constrained decoding, a technique applicable to any abstractive method with beam search decoding, to fulfill CAS and conduct experiments in two scenarios: (1) Standard summarization without human involvement, where keyphrase extraction is used to extract constraints from source documents; (2) Interactive summarization with human feedback, which is simulated by taking missing tokens in the reference summaries as constraints. Automatic and human evaluations on two benchmark datasets demonstrate that CAS improves the quality of abstractive summaries, especially on factual consistency. In particular, we observe up to 11.2 ROUGE-2 gains when several ground-truth tokens are used as constraints in the interactive summarization scenario.
We introduce MemSum (Multi-step Episodic Markov decision process extractive SUMmarizer), a reinforcement-learning-based extractive summarizer enriched at any given time step with information on the current extraction history. Similar to previous models in this vein, MemSum iteratively selects sentences into the summary. Our innovation is in considering a broader information set when summarizing that would intuitively also be used by humans in this task: 1) the text content of the sentence, 2) the global text context of the rest of the document, and 3) the extraction history consisting of the set of sentences that have already been extracted. With a lightweight architecture, MemSum nonetheless obtains state-of-the-art test-set performance (ROUGE score) on long document datasets (PubMed, arXiv, and GovReport). Supporting analysis demonstrates that the added awareness of extraction history gives MemSum robustness against redundancy in the source document.
We propose a new length-controllable abstractive summarization model. Recent state-of-the-art abstractive summarization models based on encoder-decoder models generate only one summary per source text. However, controllable summarization, especially of the length, is an important aspect for practical applications. Previous studies on length-controllable abstractive summarization incorporate length embeddings in the decoder module for controlling the summary length. Although the length embeddings can control where to stop decoding, they do not decide which information should be included in the summary within the length constraint. Unlike the previous models, our length-controllable abstractive summarization model incorporates a word-level extractive module in the encoder-decoder model instead of length embeddings. Our model generates a summary in two steps. First, our word-level extractor extracts a sequence of important words (we call it the prototype text) from the source text according to the word-level importance scores and the length constraint. Second, the prototype text is used as additional input to the encoder-decoder model, which generates a summary by jointly encoding and copying words from both the prototype text and source text. Since the prototype text is a guide to both the content and length of the summary, our model can generate an informative and length-controlled summary. Experiments with the CNN/Daily Mail dataset and the NEWSROOM dataset show that our model outperformed previous models in length-controlled settings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا