No Arabic abstract
Online sexism has become an increasing concern in social media platforms as it has affected the healthy development of the Internet and can have negative effects in society. While research in the sexism detection domain is growing, most of this research focuses on English as the language and on Twitter as the platform. Our objective here is to broaden the scope of this research by considering the Chinese language on Sina Weibo. We propose the first Chinese sexism dataset -- Sina Weibo Sexism Review (SWSR) dataset --, as well as a large Chinese lexicon SexHateLex made of abusive and gender-related terms. We introduce our data collection and annotation process, and provide an exploratory analysis of the dataset characteristics to validate its quality and to show how sexism is manifested in Chinese. The SWSR dataset provides labels at different levels of granularity including (i) sexism or non-sexism, (ii) sexism category and (iii) target type, which can be exploited, among others, for building computational methods to identify and investigate finer-grained gender-related abusive language. We conduct experiments for the three sexism classification tasks making use of state-of-the-art machine learning models. Our results show competitive performance, providing a benchmark for sexism detection in the Chinese language, as well as an error analysis highlighting open challenges needing more research in Chinese NLP. The SWSR dataset and SexHateLex lexicon are publicly available.
Although character-based models using lexicon have achieved promising results for Chinese named entity recognition (NER) task, some lexical words would introduce erroneous information due to wrongly matched words. Existing researches proposed many strategies to integrate lexicon knowledge. However, they performed with simple first-order lexicon knowledge, which provided insufficient word information and still faced the challenge of matched word boundary conflicts; or explored the lexicon knowledge with graph where higher-order information introducing negative words may disturb the identification. To alleviate the above limitations, we present new insight into second-order lexicon knowledge (SLK) of each character in the sentence to provide more lexical word information including semantic and word boundary features. Based on these, we propose a SLK-based model with a novel strategy to integrate the above lexicon knowledge. The proposed model can exploit more discernible lexical words information with the help of global context. Experimental results on three public datasets demonstrate the validity of SLK. The proposed model achieves more excellent performance than the state-of-the-art comparison methods.
Recently, many works have tried to augment the performance of Chinese named entity recognition (NER) using word lexicons. As a representative, Lattice-LSTM (Zhang and Yang, 2018) has achieved new benchmark results on several public Chinese NER datasets. However, Lattice-LSTM has a complex model architecture. This limits its application in many industrial areas where real-time NER responses are needed. In this work, we propose a simple but effective method for incorporating the word lexicon into the character representations. This method avoids designing a complicated sequence modeling architecture, and for any neural NER model, it requires only subtle adjustment of the character representation layer to introduce the lexicon information. Experimental studies on four benchmark Chinese NER datasets show that our method achieves an inference speed up to 6.15 times faster than those of state-ofthe-art methods, along with a better performance. The experimental results also show that the proposed method can be easily incorporated with pre-trained models like BERT.
Poetry is one of the most important art forms of human languages. Recently many studies have focused on incorporating some linguistic features of poetry, such as style and sentiment, into its understanding or generation system. However, there is no focus on understanding or evaluating the semantics of poetry. Therefore, we propose a novel task to assess a models semantic understanding of poetry by poem matching. Specifically, this task requires the model to select one line of Chinese classical poetry among four candidates according to the modern Chinese translation of a line of poetry. To construct this dataset, we first obtain a set of parallel data of Chinese classical poetry and modern Chinese translation. Then we retrieve similar lines of poetry with the lines in a poetry corpus as negative choices. We name the dataset Chinese Classical Poetry Matching Dataset (CCPM) and release it at https://github.com/THUNLP-AIPoet/CCPM. We hope this dataset can further enhance the study on incorporating deep semantics into the understanding and generation system of Chinese classical poetry. We also preliminarily run two variants of BERT on this dataset as the baselines for this dataset.
The advancements of neural dialogue generation models show promising results on modeling short-text conversations. However, training such models usually needs a large-scale high-quality dialogue corpus, which is hard to access. In this paper, we present a large-scale cleaned Chinese conversation dataset, LCCC, which contains a base version (6.8million dialogues) and a large version (12.0 million dialogues). The quality of our dataset is ensured by a rigorous data cleaning pipeline, which is built based on a set of rules and a classifier that is trained on manually annotated 110K dialogue pairs. We also release pre-training dialogue models which are trained on LCCC-base and LCCC-large respectively. The cleaned dataset and the pre-training models will facilitate the research of short-text conversation modeling. All the models and datasets are available at https://github.com/thu-coai/CDial-GPT.
Dialogue summarization has drawn much attention recently. Especially in the customer service domain, agents could use dialogue summaries to help boost their works by quickly knowing customers issues and service progress. These applications require summaries to contain the perspective of a single speaker and have a clear topic flow structure, while neither are available in existing datasets. Therefore, in this paper, we introduce a novel Chinese dataset for Customer Service Dialogue Summarization (CSDS). CSDS improves the abstractive summaries in two aspects: (1) In addition to the overall summary for the whole dialogue, role-oriented summaries are also provided to acquire different speakers viewpoints. (2) All the summaries sum up each topic separately, thus containing the topic-level structure of the dialogue. We define tasks in CSDS as generating the overall summary and different role-oriented summaries for a given dialogue. Next, we compare various summarization methods on CSDS, and experiment results show that existing methods are prone to generate redundant and incoherent summaries. Besides, the performance becomes much worse when analyzing the performance on role-oriented summaries and topic structures. We hope that this study could benchmark Chinese dialogue summarization and benefit further studies.