Do you want to publish a course? Click here

Fine-grained Domain Adaptive Crowd Counting via Point-derived Segmentation

201   0   0.0 ( 0 )
 Added by Yongtuo Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Existing domain adaptation methods for crowd counting view each crowd image as a whole and reduce domain discrepancies on crowds and backgrounds simultaneously. However, we argue that these methods are suboptimal, as crowds and backgrounds have quite different characteristics and backgrounds may vary dramatically in different crowd scenes (see Fig.~ref{teaser}). This makes crowds not well aligned across domains together with backgrounds in a holistic manner. To this end, we propose to untangle crowds and backgrounds from crowd images and design fine-grained domain adaption methods for crowd counting. Different from other tasks which possess region-based fine-grained annotations (e.g., segments or bounding boxes), crowd counting only annotates one point on each human head, which impedes the implementation of fine-grained adaptation methods. To tackle this issue, we propose a novel and effective schema to learn crowd segmentation from point-level crowd counting annotations in the context of Multiple Instance Learning. We further leverage the derived segments to propose a crowd-aware fine-grained domain adaptation framework for crowd counting, which consists of two novel adaptation modules, i.e., Crowd Region Transfer (CRT) and Crowd Density Alignment (CDA). Specifically, the CRT module is designed to guide crowd features transfer across domains beyond background distractions, and the CDA module dedicates to constraining the target-domain crowd density distributions. Extensive experiments on multiple cross-domain settings (i.e., Synthetic $rightarrow$ Real, Fixed $rightarrow$ Fickle, Normal $rightarrow$ BadWeather) demonstrate the superiority of the proposed method compared with state-of-the-art methods.



rate research

Read More

Despite great progress in supervised semantic segmentation,a large performance drop is usually observed when deploying the model in the wild. Domain adaptation methods tackle the issue by aligning the source domain and the target domain. However, most existing methods attempt to perform the alignment from a holistic view, ignoring the underlying class-level data structure in the target domain. To fully exploit the supervision in the source domain, we propose a fine-grained adversarial learning strategy for class-level feature alignment while preserving the internal structure of semantics across domains. We adopt a fine-grained domain discriminator that not only plays as a domain distinguisher, but also differentiates domains at class level. The traditional binary domain labels are also generalized to domain encodings as the supervision signal to guide the fine-grained feature alignment. An analysis with Class Center Distance (CCD) validates that our fine-grained adversarial strategy achieves better class-level alignment compared to other state-of-the-art methods. Our method is easy to implement and its effectiveness is evaluated on three classical domain adaptation tasks, i.e., GTA5 to Cityscapes, SYNTHIA to Cityscapes and Cityscapes to Cross-City. Large performance gains show that our method outperforms other global feature alignment based and class-wise alignment based counterparts. The code is publicly available at https://github.com/JDAI-CV/FADA.
The crowd counting task aims at estimating the number of people located in an image or a frame from videos. Existing methods widely adopt density maps as the training targets to optimize the point-to-point loss. While in testing phase, we only focus on the differences between the crowd numbers and the global summation of density maps, which indicate the inconsistency between the training targets and the evaluation criteria. To solve this problem, we introduce a new target, named local counting map (LCM), to obtain more accurate results than density map based approaches. Moreover, we also propose an adaptive mixture regression framework with three modules in a coarse-to-fine manner to further improve the precision of the crowd estimation: scale-aware module (SAM), mixture regression module (MRM) and adaptive soft interval module (ASIM). Specifically, SAM fully utilizes the context and multi-scale information from different convolutional features; MRM and ASIM perform more precise counting regression on local patches of images. Compared with current methods, the proposed method reports better performances on the typical datasets. The source code is available at https://github.com/xiyang1012/Local-Crowd-Counting.
State-of-the-art methods for counting people in crowded scenes rely on deep networks to estimate crowd density. While effective, these data-driven approaches rely on large amount of data annotation to achieve good performance, which stops these models from being deployed in emergencies during which data annotation is either too costly or cannot be obtained fast enough. One popular solution is to use synthetic data for training. Unfortunately, due to domain shift, the resulting models generalize poorly on real imagery. We remedy this shortcoming by training with both synthetic images, along with their associated labels, and unlabeled real images. To this end, we force our network to learn perspective-aware features by training it to recognize upside-down real images from regular ones and incorporate into it the ability to predict its own uncertainty so that it can generate useful pseudo labels for fine-tuning purposes. This yields an algorithm that consistently outperforms state-of-the-art cross-domain crowd counting ones without any extra computation at inference time.
Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications. However, most previous works relied on heavy backbone networks and required prohibitive run-time consumption, which would seriously restrict their deployment scopes and cause poor scalability. To liberate these crowd counting models, we propose a novel Structured Knowledge Transfer (SKT) framework, which fully exploits the structured knowledge of a well-trained teacher network to generate a lightweight but still highly effective student network. Specifically, it is integrated with two complementary transfer modules, including an Intra-Layer Pattern Transfer which sequentially distills the knowledge embedded in layer-wise features of the teacher network to guide feature learning of the student network and an Inter-Layer Relation Transfer which densely distills the cross-layer correlation knowledge of the teacher to regularize the students feature evolutio Consequently, our student network can derive the layer-wise and cross-layer knowledge from the teacher network to learn compact yet effective features. Extensive evaluations on three benchmarks well demonstrate the effectiveness of our SKT for extensive crowd counting models. In particular, only using around $6%$ of the parameters and computation cost of original models, our distilled VGG-based models obtain at least 6.5$times$ speed-up on an Nvidia 1080 GPU and even achieve state-of-the-art performance. Our code and models are available at {url{https://github.com/HCPLab-SYSU/SKT}}.
Motivated by the desire to exploit patterns shared across classes, we present a simple yet effective class-specific memory module for fine-grained feature learning. The memory module stores the prototypical feature representation for each category as a moving average. We hypothesize that the combination of similarities with respect to each category is itself a useful discriminative cue. To detect these similarities, we use attention as a querying mechanism. The attention scores with respect to each class prototype are used as weights to combine prototypes via weighted sum, producing a uniquely tailored response feature representation for a given input. The original and response features are combined to produce an augmented feature for classification. We integrate our class-specific memory module into a standard convolutional neural network, yielding a Categorical Memory Network. Our memory module significantly improves accuracy over baseline CNNs, achieving competitive accuracy with state-of-the-art methods on four benchmarks, including CUB-200-2011, Stanford Cars, FGVC Aircraft, and NABirds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا