No Arabic abstract
We examine the phenomenology of the scalar fields in weak and Higgs sectors of minimal $R$-symmetric models, in particular the swino and sbino, the scalar partners to the chiral fields that marry the electroweak gauge bosons in Dirac gaugino models. These fields are in adjoint representations of $SU(2)$ and $U(1)$ and have both $CP$-even and $CP$-odd components. The interactions of these new states are summarized, and decay widths are computed analytically to one loop order. We discuss the tree level contributions of these new states to the mass spectrum of MSSM sfermions. We also explore production cross sections and decay signatures at colliders for several chosen benchmarks. We find that large regions of parameter space are unconstrained by present collider data.
In this work we study the collider phenomenology of color-octet scalars (sgluons) in minimal supersymmetric models endowed with a global continuous $R$ symmetry. We systematically catalog the significant decay channels of scalar and pseudoscalar sgluons and identify novel features that are natural in these models. These include decays in nonstandard diboson channels, such as to a gluon and a photon; three-body decays with considerable branching fractions; and long-lived particles with displaced vertex signatures. We also discuss the single and pair production of these particles and show that they can evade existing constraints from the Large Hadron Collider, to varying extents, in large regions of reasonable parameter space. We find, for instance, that a 725 GeV scalar and a 350 GeV or lighter pseudoscalar can still be accommodated in realistic scenarios.
In this work we study the collider phenomenology of color-octet scalars (sgluons) in supersymmetric models with Dirac gaugino masses that feature an explicitly broken $R$ symmetry ($R$-broken models). We construct such models by augmenting minimal $R$-symmetric models with a fairly general set of supersymmetric and softly supersymmetry-breaking operators that explicitly break $R$ symmetry. We then compute the rates of all significant two-body decays and highlight new features that appear as a result of $R$ symmetry breaking, including enhancements to extant decay rates, novel tree- and loop-level decays, and improved cross sections of single sgluon production. We demonstrate in some detail how the familiar results from minimal $R$-symmetric models can be obtained by restoring $R$ symmetry. In parallel to this discussion, we explore constraints on these models from the Large Hadron Collider. We find that, in general, $R$ symmetry breaking quantitatively affects existing limits on color-octet scalars, perhaps closing loopholes for light CP-odd (pseudoscalar) sgluons while opening one for a light CP-even (scalar) particle. Qualitatively, however, we find that -- much as for minimal $R$-symmetric models, despite stark differences in phenomenology -- scenarios with broken $R$ symmetry and two sgluons below the TeV scale can be accommodated by existing searches.
The simple 3-3-1 model that contains the minimal lepton and minimal scalar contents is detailedly studied. The impact of the inert scalars (i.e., the extra fundamental fields that provide realistic dark matter candidates) on the model is discussed. All the interactions of the model are derived, in which the standard model ones are identified. We constrain the standard model like Higgs particle at the LHC. We search for the new particles including the inert ones, which contribute to the $B_s$-$bar{B}_s$ mixing, the rare $B_srightarrow mu^+mu^-$ decay, the CKM unitarity violation, as well as producing the dilepton, dijet, diboson, diphoton, and monojet final states at the LHC.
We explore the possibility of a single generation of $keV$ scale sterile neutrino ($m_S$) as a dark matter candidate within the minimal extended seesaw (MES) framework and its influence in neutrinoless double beta decay ($0 ubetabeta$) study. Three hierarchical right-handed neutrinos were considered to explain neutrino mass. We also address baryogenesis via the mechanism of thermal leptogenesis considering the decay of the lightest RH neutrino to a lepton and Higgs doublet. A generic model based on $A_4times Z_4times Z_3$ flavor symmetry is constructed to explain both normal and inverted hierarchy mass pattern of neutrinos. Significant results on effective neutrino masses are observed in presence of sterile mass ($m_S$) and active-sterile mixing ($theta_{S}$) in $0 ubetabeta$. Results from $0 ubetabeta$ give stringent upper bounds on the active-sterile mixing matrix element. To establish sterile neutrino as dark matter within this model, we checked decay width and relic abundance of the sterile neutrino, which restricted sterile mass ($m_S$) within some definite bounds. Constrained regions on the CP-phases and Yukawa couplings are obtained from $0 ubetabeta$ and baryogenesis results. Co-relations among these observable are also established and discussed within this framework.
The supersymmetric extension of Starobinsky $R+alpha R^2$ models of inflation is particularly simple in the new minimal formalism of supergravity, where the inflaton has no scalar superpartners. This paper is devoted to matter couplings in such supergravity models. We show how in the new minimal formalism matter coupling presents certain features absent in other formalisms. In particular, for the large class of matter couplings considered in this paper, matter must possess an R-symmetry, which is gauged by the vector field which becomes dynamical in the new minimal completion of the $R+alpha R^2$ theory. Thus, in the dual formulation of the theory, where the gauge vector is part of a massive vector multiplet, the inflaton is the superpartner of the massive vector of a nonlinearly realized R-symmetry. The F-term potential of this theory is of no-scale type, while the inflaton potential is given by the D-term of the gauged R-symmetry. The absolute minimum of the potential is always exactly supersymmetric, so in this class of models if realistic vacua exist, they must be always metastable. We also briefly comment on possible generalizations of the examples discussed here and we exhibit some features of higher-curvature supergravity coupled to matter in the old minimal formalism.