Do you want to publish a course? Click here

Scheduling with Communication Delay in Near-Linear Time

195   0   0.0 ( 0 )
 Added by Quanquan C. Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. In this setting, if two precedence-constrained jobs $u$ and $v$, with ($u prec v$), are scheduled on different machines, then $v$ must start at least $rho$ time units after $u$ completes. The scheduling objective is to minimize makespan, i.e. the total time between when the first job starts and the last job completes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an $Oleft(frac{ln rho}{ln ln rho} right)$-approximation algorithm that runs in $tilde{O}(|V| + |E|)$ time.



rate research

Read More

We show that the edit distance between two strings of length $n$ can be computed within a factor of $f(epsilon)$ in $n^{1+epsilon}$ time as long as the edit distance is at least $n^{1-delta}$ for some $delta(epsilon) > 0$.
We consider the problem of online scheduling on a single machine in order to minimize weighted flow time. The existing algorithms for this problem (STOC 01, SODA 03, FOCS 18) all require exact knowledge of the processing time of each job. This assumption is crucial, as even a slight perturbation of the processing time would lead to polynomial competitive ratio. However, this assumption very rarely holds in real-life scenarios. In this paper, we present the first algorithm for weighted flow time which do not require exact knowledge of the processing times of jobs. Specifically, we introduce the Scheduling with Predicted Processing Time (SPPT) problem, where the algorithm is given a prediction for the processing time of each job, instead of its real processing time. For the case of a constant factor distortion between the predictions and the real processing time, our algorithms match all the best known competitiveness bounds for weighted flow time -- namely $O(log P), O(log D)$ and $O(log W)$, where $P,D,W$ are the maximum ratios of processing times, densities, and weights, respectively. For larger errors, the competitiveness of our algorithms degrades gracefully.
We consider the classic problem of scheduling jobs with precedence constraints on identical machines to minimize makespan, in the presence of communication delays. In this setting, denoted by $mathsf{P} mid mathsf{prec}, c mid C_{mathsf{max}}$, if two dependent jobs are scheduled on different machines, then at least $c$ units of time must pass between their executions. Despite its relevance to many applications, this model remains one of the most poorly understood in scheduling theory. Even for a special case where an unlimited number of machines is available, the best known approximation ratio is $2/3 cdot (c+1)$, whereas Grahams greedy list scheduling algorithm already gives a $(c+1)$-approximation in that setting. An outstanding open problem in the top-10 list by Schuurman and Woeginger and its recent update by Bansal asks whether there exists a constant-factor approximation algorithm. In this work we give a polynomial-time $O(log c cdot log m)$-approximation algorithm for this problem, where $m$ is the number of machines and $c$ is the communication delay. Our approach is based on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering of the semimetric space induced by this lift.
84 - Li Chen , Richard Peng , 2021
Diffusion is a fundamental graph procedure and has been a basic building block in a wide range of theoretical and empirical applications such as graph partitioning and semi-supervised learning on graphs. In this paper, we study computationally efficient diffusion primitives beyond random walk. We design an $widetilde{O}(m)$-time randomized algorithm for the $ell_2$-norm flow diffusion problem, a recently proposed diffusion model based on network flow with demonstrated graph clustering related applications both in theory and in practice. Examples include finding locally-biased low conductance cuts. Using a known connection between the optimal dual solution of the flow diffusion problem and the local cut structure, our algorithm gives an alternative approach for finding such cuts in nearly linear time. From a technical point of view, our algorithm contributes a novel way of dealing with inequality constraints in graph optimization problems. It adapts the high-level algorithmic framework of nearly linear time Laplacian system solvers, but requires several new tools: vertex elimination under constraints, a new family of graph ultra-sparsifiers, and accelerated proximal gradient methods with inexact proximal mapping computation.
We consider the problem of center-based clustering in low-dimensional Euclidean spaces under the perturbation stability assumption. An instance is $alpha$-stable if the underlying optimal clustering continues to remain optimal even when all pairwise distances are arbitrarily perturbed by a factor of at most $alpha$. Our main contribution is in presenting efficient exact algorithms for $alpha$-stable clustering instances whose running times depend near-linearly on the size of the data set when $alpha ge 2 + sqrt{3}$. For $k$-center and $k$-means problems, our algorithms also achieve polynomial dependence on the number of clusters, $k$, when $alpha geq 2 + sqrt{3} + epsilon$ for any constant $epsilon > 0$ in any fixed dimension. For $k$-median, our algorithms have polynomial dependence on $k$ for $alpha > 5$ in any fixed dimension; and for $alpha geq 2 + sqrt{3}$ in two dimensions. Our algorithms are simple, and only require applying techniques such as local search or dynamic programming to a suitably modified metric space, combined with careful choice of data structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا