Do you want to publish a course? Click here

Flow Time Scheduling with Uncertain Processing Time

153   0   0.0 ( 0 )
 Added by Stefano Leonardi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider the problem of online scheduling on a single machine in order to minimize weighted flow time. The existing algorithms for this problem (STOC 01, SODA 03, FOCS 18) all require exact knowledge of the processing time of each job. This assumption is crucial, as even a slight perturbation of the processing time would lead to polynomial competitive ratio. However, this assumption very rarely holds in real-life scenarios. In this paper, we present the first algorithm for weighted flow time which do not require exact knowledge of the processing times of jobs. Specifically, we introduce the Scheduling with Predicted Processing Time (SPPT) problem, where the algorithm is given a prediction for the processing time of each job, instead of its real processing time. For the case of a constant factor distortion between the predictions and the real processing time, our algorithms match all the best known competitiveness bounds for weighted flow time -- namely $O(log P), O(log D)$ and $O(log W)$, where $P,D,W$ are the maximum ratios of processing times, densities, and weights, respectively. For larger errors, the competitiveness of our algorithms degrades gracefully.



rate research

Read More

Shortest Remaining Processing Time (SRPT) is a well known preemptive scheduling algorithm for uniprocessor and multiprocessor systems. SRPT finds applications in the emerging areas such as scheduling of clients requests that are submitted to a web server for accessing static web pages, managing the access requests to files in multiuser database systems and routing of packets across several links as per bandwidth availability in data communications. SRPT has been proved to be optimal for the settings, where the objective is to minimize the mean response time of a list of jobs. According to our knowledge, there is less attention on the study of online SRPT with respect to the minimization of makespan as a performance criterion. In this paper, we study the SRPT algorithm for online scheduling in multiprocessor systems with makespan minimization as an objective. We obtain improved constant competitiveness results for algorithm SRPT for special classes of online job sequences based on practical real life applications.
We consider the problem of efficiently scheduling jobs with precedence constraints on a set of identical machines in the presence of a uniform communication delay. In this setting, if two precedence-constrained jobs $u$ and $v$, with ($u prec v$), are scheduled on different machines, then $v$ must start at least $rho$ time units after $u$ completes. The scheduling objective is to minimize makespan, i.e. the total time between when the first job starts and the last job completes. The focus of this paper is to provide an efficient approximation algorithm with near-linear running time. We build on the algorithm of Lepere and Rapine [STACS 2002] for this problem to give an $Oleft(frac{ln rho}{ln ln rho} right)$-approximation algorithm that runs in $tilde{O}(|V| + |E|)$ time.
Modern networks run middleboxes that offer services ranging from network address translation and server load balancing to firewalls, encryption, and compression. In an industry trend known as Network Functions Virtualization (NFV), these middleboxes run as virtual machines on any commodity server, and the switches steer traffic through the relevant chain of services. Network administrators must decide how many middleboxes to run, where to place them, and how to direct traffic through them, based on the traffic load and the server and network capacity. Rather than placing specific kinds of middleboxes on each processing node, we argue that server virtualization allows each server node to host all middlebox functions, and simply vary the fraction of resources devoted to each one. This extra flexibility fundamentally changes the optimization problem the network administrators must solve to a new kind of multi-commodity flow problem, where the traffic flows consume bandwidth on the links as well as processing resources on the nodes. We show that allocating resources to maximize the processed flow can be optimized exactly via a linear programming formulation, and to arbitrary accuracy via an efficient combinatorial algorithm. Our experiments with real traffic and topologies show that a joint optimization of node and link resources leads to an efficient use of bandwidth and processing capacity. We also study a class of design problems that decide where to provide node capacity to best process and route a given set of demands, and demonstrate both approximation algorithms and hardness results for these problems.
81 - Yossi Azar , Noam Touitou 2017
We discuss one of the most fundamental scheduling problem of processing jobs on a single machine to minimize the weighted flow time (weighted response time). Our main result is a $O(log P)$-competitive algorithm, where $P$ is the maximum-to-minimum processing time ratio, improving upon the $O(log^{2}P)$-competitive algorithm of Chekuri, Khanna and Zhu (STOC 2001). We also design a $O(log D)$-competitive algorithm, where $D$ is the maximum-to-minimum density ratio of jobs. Finally, we show how to combine these results with the result of Bansal and Dhamdhere (SODA 2003) to achieve a $O(log(min(P,D,W)))$-competitive algorithm (where $W$ is the maximum-to-minimum weight ratio), without knowing $P,D,W$ in advance. As shown by Bansal and Chan (SODA 2009), no constant-competitive algorithm is achievable for this problem.
84 - Li Chen , Richard Peng , 2021
Diffusion is a fundamental graph procedure and has been a basic building block in a wide range of theoretical and empirical applications such as graph partitioning and semi-supervised learning on graphs. In this paper, we study computationally efficient diffusion primitives beyond random walk. We design an $widetilde{O}(m)$-time randomized algorithm for the $ell_2$-norm flow diffusion problem, a recently proposed diffusion model based on network flow with demonstrated graph clustering related applications both in theory and in practice. Examples include finding locally-biased low conductance cuts. Using a known connection between the optimal dual solution of the flow diffusion problem and the local cut structure, our algorithm gives an alternative approach for finding such cuts in nearly linear time. From a technical point of view, our algorithm contributes a novel way of dealing with inequality constraints in graph optimization problems. It adapts the high-level algorithmic framework of nearly linear time Laplacian system solvers, but requires several new tools: vertex elimination under constraints, a new family of graph ultra-sparsifiers, and accelerated proximal gradient methods with inexact proximal mapping computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا