Do you want to publish a course? Click here

Time-aware Path Reasoning on Knowledge Graph for Recommendation

124   0   0.0 ( 0 )
 Added by Yuyue Zhao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Reasoning on knowledge graph (KG) has been studied for explainable recommendation due to its ability of providing explicit explanations. However, current KG-based explainable recommendation methods unfortunately ignore the temporal information (such as purchase time, recommend time, etc.), which may result in unsuitable explanations. In this work, we propose a novel Time-aware Path reasoning for Recommendation (TPRec for short) method, which leverages the potential of temporal information to offer better recommendation with plausible explanations. First, we present an efficient time-aware interaction relation extraction component to construct collaborative knowledge graph with time-aware interactions (TCKG for short), and then introduce a novel time-aware path reasoning method for recommendation. We conduct extensive experiments on three real-world datasets. The results demonstrate that the proposed TPRec could successfully employ TCKG to achieve substantial gains and improve the quality of explainable recommendation.



rate research

Read More

To alleviate data sparsity and cold-start problems of traditional recommender systems (RSs), incorporating knowledge graphs (KGs) to supplement auxiliary information has attracted considerable attention recently. However, simply integrating KGs in current KG-based RS models is not necessarily a guarantee to improve the recommendation performance, which may even weaken the holistic model capability. This is because the construction of these KGs is independent of the collection of historical user-item interactions; hence, information in these KGs may not always be helpful for recommendation to all users. In this paper, we propose attentive Knowledge-aware Graph convolutional networks with Collaborative Guidance for personalized Recommendation (CG-KGR). CG-KGR is a novel knowledge-aware recommendation model that enables ample and coherent learning of KGs and user-item interactions, via our proposed Collaborative Guidance Mechanism. Specifically, CG-KGR first encapsulates historical interactions to interactive information summarization. Then CG-KGR utilizes it as guidance to extract information out of KGs, which eventually provides more precise personalized recommendation. We conduct extensive experiments on four real-world datasets over two recommendation tasks, i.e., Top-K recommendation and Click-Through rate (CTR) prediction. The experimental results show that the CG-KGR model significantly outperforms recent state-of-the-art models by 4.0-53.2% and 0.4-3.2%, in terms of Recall metric on Top-K recommendation and AUC on CTR prediction, respectively.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a users interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
Aiming to alleviate data sparsity and cold-start problems of traditional recommender systems, incorporating knowledge graphs (KGs) to supplement auxiliary information has recently gained considerable attention. Via unifying the KG with user-item interactions into a tripartite graph, recent works explore the graph topologies to learn the low-dimensional representations of users and items with rich semantics. However, these real-world tripartite graphs are usually scale-free, the intrinsic hierarchical graph structures of which are underemphasized in existing works, consequently, leading to suboptimal recommendation performance. To address this issue and provide more accurate recommendation, we propose a knowledge-aware recommendation method with the hyperbolic geometry, namely Lorentzian Knowledge-enhanced Graph convolutional networks for Recommendation (LKGR). LKGR facilitates better modeling of scale-free tripartite graphs after the data unification. Specifically, we employ different information propagation strategies in the hyperbolic space to explicitly encode heterogeneous information from historical interactions and KGs. Our proposed knowledge-aware attention mechanism enables the model to automatically measure the information contribution, producing the coherent information aggregation in the hyperbolic space. Extensive experiments on three real-world benchmarks demonstrate that LKGR outperforms state-of-the-art methods by 2.2-29.9% of Recall@20 on Top-K recommendation.
171 - Weizhi Ma , Min Zhang , Yue Cao 2019
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا