Do you want to publish a course? Click here

Hybrid Reasoning Network for Video-based Commonsense Captioning

124   0   0.0 ( 0 )
 Added by Weijiang Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The task of video-based commonsense captioning aims to generate event-wise captions and meanwhile provide multiple commonsense descriptions (e.g., attribute, effect and intention) about the underlying event in the video. Prior works explore the commonsense captions by using separate networks for different commonsense types, which is time-consuming and lacks mining the interaction of different commonsense. In this paper, we propose a Hybrid Reasoning Network (HybridNet) to endow the neural networks with the capability of semantic-level reasoning and word-level reasoning. Firstly, we develop multi-commonsense learning for semantic-level reasoning by jointly training different commonsense types in a unified network, which encourages the interaction between the clues of multiple commonsense descriptions, event-wise captions and videos. Then, there are two steps to achieve the word-level reasoning: (1) a memory module records the history predicted sequence from the previous generation processes; (2) a memory-routed multi-head attention (MMHA) module updates the word-level attention maps by incorporating the history information from the memory module into the transformer decoder for word-level reasoning. Moreover, the multimodal features are used to make full use of diverse knowledge for commonsense reasoning. Experiments and abundant analysis on the large-scale Video-to-Commonsense benchmark show that our HybridNet achieves state-of-the-art performance compared with other methods.



rate research

Read More

Due to the rapid emergence of short videos and the requirement for content understanding and creation, the video captioning task has received increasing attention in recent years. In this paper, we convert traditional video captioning task into a new paradigm, ie, Open-book Video Captioning, which generates natural language under the prompts of video-content-relevant sentences, not limited to the video itself. To address the open-book video captioning problem, we propose a novel Retrieve-Copy-Generate network, where a pluggable video-to-text retriever is constructed to retrieve sentences as hints from the training corpus effectively, and a copy-mechanism generator is introduced to extract expressions from multi-retrieved sentences dynamically. The two modules can be trained end-to-end or separately, which is flexible and extensible. Our framework coordinates the conventional retrieval-based methods with orthodox encoder-decoder methods, which can not only draw on the diverse expressions in the retrieved sentences but also generate natural and accurate content of the video. Extensive experiments on several benchmark datasets show that our proposed approach surpasses the state-of-the-art performance, indicating the effectiveness and promising of the proposed paradigm in the task of video captioning.
Video captioning has been a challenging and significant task that describes the content of a video clip in a single sentence. The model of video captioning is usually an encoder-decoder. We find that the normalization of extracted video features can improve the final performance of video captioning. Encoder-decoder model is usually trained using teacher-enforced strategies to make the prediction probability of each word close to a 0-1 distribution and ignore other words. In this paper, we present a novel architecture which introduces a guidance module to encourage the encoder-decoder model to generate words related to the past and future words in a caption. Based on the normalization and guidance module, guidance module net (GMNet) is built. Experimental results on commonly used dataset MSVD show that proposed GMNet can improve the performance of the encoder-decoder model on video captioning tasks.
This report describes our solution for the VATEX Captioning Challenge 2020, which requires generating descriptions for the videos in both English and Chinese languages. We identified three crucial factors that improve the performance, namely: multi-view features, hybrid reward, and diverse ensemble. Based on our method of VATEX 2019 challenge, we achieved significant improvements this year with more advanced model architectures, combination of appearance and motion features, and careful hyper-parameters tuning. Our method achieves very competitive results on both of the Chinese and English video captioning tracks.
Inspired by the fact that different modalities in videos carry complementary information, we propose a Multimodal Semantic Attention Network(MSAN), which is a new encoder-decoder framework incorporating multimodal semantic attributes for video captioning. In the encoding phase, we detect and generate multimodal semantic attributes by formulating it as a multi-label classification problem. Moreover, we add auxiliary classification loss to our model that can obtain more effective visual features and high-level multimodal semantic attribute distributions for sufficient video encoding. In the decoding phase, we extend each weight matrix of the conventional LSTM to an ensemble of attribute-dependent weight matrices, and employ attention mechanism to pay attention to different attributes at each time of the captioning process. We evaluate algorithm on two popular public benchmarks: MSVD and MSR-VTT, achieving competitive results with current state-of-the-art across six evaluation metrics.
Figures, such as bar charts, pie charts, and line plots, are widely used to convey important information in a concise format. They are usually human-friendly but difficult for computers to process automatically. In this work, we investigate the problem of figure captioning where the goal is to automatically generate a natural language description of the figure. While natural image captioning has been studied extensively, figure captioning has received relatively little attention and remains a challenging problem. First, we introduce a new dataset for figure captioning, FigCAP, based on FigureQA. Second, we propose two novel attention mechanisms. To achieve accurate generation of labels in figures, we propose Label Maps Attention. To model the relations between figure labels, we propose Relation Maps Attention. Third, we use sequence-level training with reinforcement learning in order to directly optimizes evaluation metrics, which alleviates the exposure bias issue and further improves the models in generating long captions. Extensive experiments show that the proposed method outperforms the baselines, thus demonstrating a significant potential for the automatic captioning of vast repositories of figures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا