Do you want to publish a course? Click here

Exploring Structure Consistency for Deep Model Watermarking

108   0   0.0 ( 0 )
 Added by Jie Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The intellectual property (IP) of Deep neural networks (DNNs) can be easily ``stolen by surrogate model attack. There has been significant progress in solutions to protect the IP of DNN models in classification tasks. However, little attention has been devoted to the protection of DNNs in image processing tasks. By utilizing consistent invisible spatial watermarks, one recent work first considered model watermarking for deep image processing networks and demonstrated its efficacy in many downstream tasks. Nevertheless, it highly depends on the hypothesis that the embedded watermarks in the network outputs are consistent. When the attacker uses some common data augmentation attacks (e.g., rotate, crop, and resize) during surrogate model training, it will totally fail because the underlying watermark consistency is destroyed. To mitigate this issue, we propose a new watermarking methodology, namely ``structure consistency, based on which a new deep structure-aligned model watermarking algorithm is designed. Specifically, the embedded watermarks are designed to be aligned with physically consistent image structures, such as edges or semantic regions. Experiments demonstrate that our method is much more robust than the baseline method in resisting data augmentation attacks for model IP protection. Besides that, we further test the generalization ability and robustness of our method to a broader range of circumvention attacks.



rate research

Read More

Deep convolutional neural networks have made outstanding contributions in many fields such as computer vision in the past few years and many researchers published well-trained network for downloading. But recent studies have shown serious concerns about integrity due to model-reuse attacks and backdoor attacks. In order to protect these open-source networks, many algorithms have been proposed such as watermarking. However, these existing algorithms modify the contents of the network permanently and are not suitable for integrity authentication. In this paper, we propose a reversible watermarking algorithm for integrity authentication. Specifically, we present the reversible watermarking problem of deep convolutional neural networks and utilize the pruning theory of model compression technology to construct a host sequence used for embedding watermarking information by histogram shift. As shown in the experiments, the influence of embedding reversible watermarking on the classification performance is less than 0.5% and the parameters of the model can be fully recovered after extracting the watermarking. At the same time, the integrity of the model can be verified by applying the reversible watermarking: if the model is modified illegally, the authentication information generated by original model will be absolutely different from the extracted watermarking information.
Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and the importance that DNNs are gaining in our society. Following its use for Multimedia (MM) IPR protection, digital watermarking has recently been considered as a mean to protect the IPR of DNNs. While DNN watermarking inherits some basic concepts and methods from MM watermarking, there are significant differences between the two application areas, calling for the adaptation of media watermarking techniques to the DNN scenario and the development of completely new methods. In this paper, we overview the most recent advances in DNN watermarking, by paying attention to cast it into the bulk of watermarking theory developed during the last two decades, while at the same time highlighting the new challenges and opportunities characterizing DNN watermarking. Rather than trying to present a comprehensive description of all the methods proposed so far, we introduce a new taxonomy of DNN watermarking and present a few exemplary methods belonging to each class. We hope that this paper will inspire new research in this exciting area and will help researchers to focus on the most innovative and challenging problems in the field.
113 - Franziska Boenisch 2020
Machine learning (ML) models are applied in an increasing variety of domains. The availability of large amounts of data and computational resources encourages the development of ever more complex and valuable models. These models are considered intellectual property of the legitimate parties who have trained them, which makes their protection against stealing, illegitimate redistribution, and unauthorized application an urgent need. Digital watermarking presents a strong mechanism for marking model ownership and, thereby, offers protection against those threats. The emergence of numerous watermarking schemes and attacks against them is pushed forward by both academia and industry, which motivates a comprehensive survey on this field. This document at hand provides the first extensive literature review on ML model watermarking schemes and attacks against them. It offers a taxonomy of existing approaches and systemizes general knowledge around them. Furthermore, it assembles the security requirements to watermarking approaches and evaluates schemes published by the scientific community according to them in order to present systematic shortcomings and vulnerabilities. Thus, it can not only serve as valuable guidance in choosing the appropriate scheme for specific scenarios, but also act as an entry point into developing new mechanisms that overcome presented shortcomings, and thereby contribute in advancing the field.
DNN watermarking is receiving an increasing attention as a suitable mean to protect the Intellectual Property Rights associated to DNN models. Several methods proposed so far are inspired to the popular Spread Spectrum (SS) paradigm according to which the watermark bits are embedded into the projection of the weights of the DNN model onto a pseudorandom sequence. In this paper, we propose a new DNN watermarking algorithm that leverages on the watermarking with side information paradigm to decrease the obtrusiveness of the watermark and increase its payload. In particular, the new scheme exploits the main ideas of ST-DM (Spread Transform Dither Modulation) watermarking to improve the performance of a recently proposed algorithm based on conventional SS. The experiments we carried out by applying the proposed scheme to watermark different models, demonstrate its capability to provide a higher payload with a lower impact on network accuracy than a baseline method based on conventional SS, while retaining a satisfactory level of robustness.
In order to protect the intellectual property (IP) of deep neural networks (DNNs), many existing DNN watermarking techniques either embed watermarks directly into the DNN parameters or insert backdoor watermarks by fine-tuning the DNN parameters, which, however, cannot resist against various attack methods that remove watermarks by altering DNN parameters. In this paper, we bypass such attacks by introducing a structural watermarking scheme that utilizes channel pruning to embed the watermark into the host DNN architecture instead of crafting the DNN parameters. To be specific, during watermark embedding, we prune the internal channels of the host DNN with the channel pruning rates controlled by the watermark. During watermark extraction, the watermark is retrieved by identifying the channel pruning rates from the architecture of the target DNN model. Due to the superiority of pruning mechanism, the performance of the DNN model on its original task is reserved during watermark embedding. Experimental results have shown that, the proposed work enables the embedded watermark to be reliably recovered and provides a high watermark capacity, without sacrificing the usability of the DNN model. It is also demonstrated that the work is robust against common transforms and attacks designed for conventional watermarking approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا