No Arabic abstract
In order to protect the intellectual property (IP) of deep neural networks (DNNs), many existing DNN watermarking techniques either embed watermarks directly into the DNN parameters or insert backdoor watermarks by fine-tuning the DNN parameters, which, however, cannot resist against various attack methods that remove watermarks by altering DNN parameters. In this paper, we bypass such attacks by introducing a structural watermarking scheme that utilizes channel pruning to embed the watermark into the host DNN architecture instead of crafting the DNN parameters. To be specific, during watermark embedding, we prune the internal channels of the host DNN with the channel pruning rates controlled by the watermark. During watermark extraction, the watermark is retrieved by identifying the channel pruning rates from the architecture of the target DNN model. Due to the superiority of pruning mechanism, the performance of the DNN model on its original task is reserved during watermark embedding. Experimental results have shown that, the proposed work enables the embedded watermark to be reliably recovered and provides a high watermark capacity, without sacrificing the usability of the DNN model. It is also demonstrated that the work is robust against common transforms and attacks designed for conventional watermarking approaches.
Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and the importance that DNNs are gaining in our society. Following its use for Multimedia (MM) IPR protection, digital watermarking has recently been considered as a mean to protect the IPR of DNNs. While DNN watermarking inherits some basic concepts and methods from MM watermarking, there are significant differences between the two application areas, calling for the adaptation of media watermarking techniques to the DNN scenario and the development of completely new methods. In this paper, we overview the most recent advances in DNN watermarking, by paying attention to cast it into the bulk of watermarking theory developed during the last two decades, while at the same time highlighting the new challenges and opportunities characterizing DNN watermarking. Rather than trying to present a comprehensive description of all the methods proposed so far, we introduce a new taxonomy of DNN watermarking and present a few exemplary methods belonging to each class. We hope that this paper will inspire new research in this exciting area and will help researchers to focus on the most innovative and challenging problems in the field.
DNN watermarking is receiving an increasing attention as a suitable mean to protect the Intellectual Property Rights associated to DNN models. Several methods proposed so far are inspired to the popular Spread Spectrum (SS) paradigm according to which the watermark bits are embedded into the projection of the weights of the DNN model onto a pseudorandom sequence. In this paper, we propose a new DNN watermarking algorithm that leverages on the watermarking with side information paradigm to decrease the obtrusiveness of the watermark and increase its payload. In particular, the new scheme exploits the main ideas of ST-DM (Spread Transform Dither Modulation) watermarking to improve the performance of a recently proposed algorithm based on conventional SS. The experiments we carried out by applying the proposed scheme to watermark different models, demonstrate its capability to provide a higher payload with a lower impact on network accuracy than a baseline method based on conventional SS, while retaining a satisfactory level of robustness.
In this paper, we introduce a new channel pruning method to accelerate very deep convolutional neural networks.Given a trained CNN model, we propose an iterative two-step algorithm to effectively prune each layer, by a LASSO regression based channel selection and least square reconstruction. We further generalize this algorithm to multi-layer and multi-branch cases. Our method reduces the accumulated error and enhance the compatibility with various architectures. Our pruned VGG-16 achieves the state-of-the-art results by 5x speed-up along with only 0.3% increase of error. More importantly, our method is able to accelerate modern networks like ResNet, Xception and suffers only 1.4%, 1.0% accuracy loss under 2x speed-up respectively, which is significant. Code has been made publicly available.
Model compression aims to reduce the redundancy of deep networks to obtain compact models. Recently, channel pruning has become one of the predominant compression methods to deploy deep models on resource-constrained devices. Most channel pruning methods often use a fixed compression rate for all the layers of the model, which, however, may not be optimal. To address this issue, given a target compression rate for the whole model, one can search for the optimal compression rate for each layer. Nevertheless, these methods perform channel pruning for a specific target compression rate. When we consider multiple compression rates, they have to repeat the channel pruning process multiple times, which is very inefficient yet unnecessary. To address this issue, we propose a Conditional Automated Channel Pruning(CACP) method to obtain the compressed models with different compression rates through single channel pruning process. To this end, we develop a conditional model that takes an arbitrary compression rate as input and outputs the corresponding compressed model. In the experiments, the resultant models with different compression rates consistently outperform the models compressed by existing methods with a channel pruning process for each target compression rate.
Deep convolutional neural networks have made outstanding contributions in many fields such as computer vision in the past few years and many researchers published well-trained network for downloading. But recent studies have shown serious concerns about integrity due to model-reuse attacks and backdoor attacks. In order to protect these open-source networks, many algorithms have been proposed such as watermarking. However, these existing algorithms modify the contents of the network permanently and are not suitable for integrity authentication. In this paper, we propose a reversible watermarking algorithm for integrity authentication. Specifically, we present the reversible watermarking problem of deep convolutional neural networks and utilize the pruning theory of model compression technology to construct a host sequence used for embedding watermarking information by histogram shift. As shown in the experiments, the influence of embedding reversible watermarking on the classification performance is less than 0.5% and the parameters of the model can be fully recovered after extracting the watermarking. At the same time, the integrity of the model can be verified by applying the reversible watermarking: if the model is modified illegally, the authentication information generated by original model will be absolutely different from the extracted watermarking information.