No Arabic abstract
Document layout analysis (DLA) aims to divide a document image into different types of regions. DLA plays an important role in the document content understanding and information extraction systems. Exploring a method that can use less data for effective training contributes to the development of DLA. We consider a Human-in-the-loop (HITL) collaborative intelligence in the DLA. Our approach was inspired by the fact that the HITL push the model to learn from the unknown problems by adding a small amount of data based on knowledge. The HITL select key samples by using confidence. However, using confidence to find key samples is not suitable for DLA tasks. We propose the Key Samples Selection (KSS) method to find key samples in high-level tasks (semantic segmentation) more accurately through agent collaboration, effectively reducing costs. Once selected, these key samples are passed to human beings for active labeling, then the model will be updated with the labeled samples. Hence, we revisited the learning system from reinforcement learning and designed a sample-based agent update strategy, which effectively improves the agents ability to accept new samples. It achieves significant improvement results in two benchmarks (DSSE-200 (from 77.1% to 86.3%) and CS-150 (from 88.0% to 95.6%)) by using 10% of labeled data.
We present document domain randomization (DDR), the first successful transfer of convolutional neural networks (CNNs) trained only on graphically rendered pseudo-paper pages to real-world document segmentation. DDR renders pseudo-document pages by modeling randomized textual and non-textual contents of interest, with user-defined layout and font styles to support joint learning of fine-grained classes. We demonstrate competitive results using our DDR approach to extract nine document classes from the benchmark CS-150 and papers published in two domains, namely annual meetings of Association for Computational Linguistics (ACL) and IEEE Visualization (VIS). We compare DDR to conditions of style mismatch, fewer or more noisy samples that are more easily obtained in the real world. We show that high-fidelity semantic information is not necessary to label semantic classes but style mismatch between train and test can lower model accuracy. Using smaller training samples had a slightly detrimental effect. Finally, network models still achieved high test accuracy when correct labels are diluted towards confusing labels; this behavior hold across several classes.
Layout is a fundamental component of any graphic design. Creating large varieties of plausible document layouts can be a tedious task, requiring numerous constraints to be satisfied, including local ones relating different semantic elements and global constraints on the general appearance and spacing. In this paper, we present a novel framework, coined READ, for REcursive Autoencoders for Document layout generation, to generate plausible 2D layouts of documents in large quantities and varieties. First, we devise an exploratory recursive method to extract a structural decomposition of a single document. Leveraging a dataset of documents annotated with labeled bounding boxes, our recursive neural network learns to map the structural representation, given in the form of a simple hierarchy, to a compact code, the space of which is approximated by a Gaussian distribution. Novel hierarchies can be sampled from this space, obtaining new document layouts. Moreover, we introduce a combinatorial metric to measure structural similarity among document layouts. We deploy it to show that our method is able to generate highly variable and realistic layouts. We further demonstrate the utility of our generated layouts in the context of standard detection tasks on documents, showing that detection performance improves when the training data is augmented with generated documents whose layouts are produced by READ.
Document layout analysis is crucial for understanding document structures. On this task, vision and semantics of documents, and relations between layout components contribute to the understanding process. Though many works have been proposed to exploit the above information, they show unsatisfactory results. NLP-based methods model layout analysis as a sequence labeling task and show insufficient capabilities in layout modeling. CV-based methods model layout analysis as a detection or segmentation task, but bear limitations of inefficient modality fusion and lack of relation modeling between layout components. To address the above limitations, we propose a unified framework VSR for document layout analysis, combining vision, semantics and relations. VSR supports both NLP-based and CV-based methods. Specifically, we first introduce vision through document image and semantics through text embedding maps. Then, modality-specific visual and semantic features are extracted using a two-stream network, which are adaptively fused to make full use of complementary information. Finally, given component candidates, a relation module based on graph neural network is incorported to model relations between components and output final results. On three popular benchmarks, VSR outperforms previous models by large margins. Code will be released soon.
Document layout analysis usually relies on computer vision models to understand documents while ignoring textual information that is vital to capture. Meanwhile, high quality labeled datasets with both visual and textual information are still insufficient. In this paper, we present textbf{DocBank}, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis. DocBank is constructed using a simple yet effective way with weak supervision from the LaTeX{} documents available on the arXiv.com. With DocBank, models from different modalities can be compared fairly and multi-modal approaches will be further investigated and boost the performance of document layout analysis. We build several strong baselines and manually split train/dev/test sets for evaluation. Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents. The DocBank dataset is publicly available at url{https://github.com/doc-analysis/DocBank}.
Documents often contain complex physical structures, which make the Document Layout Analysis (DLA) task challenging. As a pre-processing step for content extraction, DLA has the potential to capture rich information in historical or scientific documents on a large scale. Although many deep-learning-based methods from computer vision have already achieved excellent performance in detecting emph{Figure} from documents, they are still unsatisfactory in recognizing the emph{List}, emph{Table}, emph{Text} and emph{Title} category blocks in DLA. This paper proposes a VTLayout model fusing the documents deep visual, shallow visual, and text features to localize and identify different category blocks. The model mainly includes two stages, and the three feature extractors are built in the second stage. In the first stage, the Cascade Mask R-CNN model is applied directly to localize all category blocks of the documents. In the second stage, the deep visual, shallow visual, and text features are extracted for fusion to identify the category blocks of documents. As a result, we strengthen the classification power of different category blocks based on the existing localization technique. The experimental results show that the identification capability of the VTLayout is superior to the most advanced method of DLA based on the PubLayNet dataset, and the F1 score is as high as 0.9599.