No Arabic abstract
Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification. Particularly, previous studies suggest that prompt-tuning has remarkable superiority in the low-data scenario over the generic fine-tuning methods with extra classifiers. The core idea of prompt-tuning is to insert text pieces, i.e., template, to the input and transform a classification problem into a masked language modeling problem, where a crucial step is to construct a projection, i.e., verbalizer, between a label space and a label word space. A verbalizer is usually handcrafted or searched by gradient descent, which may lack coverage and bring considerable bias and high variances to the results. In this work, we focus on incorporating external knowledge into the verbalizer, forming a knowledgeable prompt-tuning (KPT), to improve and stabilize prompt-tuning. Specifically, we expand the label word space of the verbalizer using external knowledge bases (KBs) and refine the expanded label word space with the PLM itself before predicting with the expanded label word space. Extensive experiments on zero and few-shot text classification tasks demonstrate the effectiveness of knowledgeable prompt-tuning.
Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream tasks. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is still challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical and complicated many-class classification task, and the results show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of both human prior knowledge and PLMs for those complicated classification tasks.
Recently, prompt-tuning has achieved promising results for certain few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language modeling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exist abundant semantic knowledge among the entities and relations that cannot be ignored. To this end, we focus on incorporating knowledge into prompt-tuning for relation extraction and propose a knowledge-aware prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject entity and relation knowledge into prompt construction with learnable virtual template words as well as answer words and synergistically optimize their representation with knowledge constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach.
In this work, we explore prompt tuning, a simple yet effective mechanism for learning soft prompts to condition frozen language models to perform specific downstream tasks. Unlike the discrete text prompts used by GPT-3, soft prompts are learned through backpropagation and can be tuned to incorporate signal from any number of labeled examples. Our end-to-end learned approach outperforms GPT-3s few-shot learning by a large margin. More remarkably, through ablations on model size using T5, we show that prompt tuning becomes more competitive with scale: as models exceed billions of parameters, our method closes the gap and matches the strong performance of model tuning (where all model weights are tuned). This finding is especially relevant in that large models are costly to share and serve, and the ability to reuse one frozen model for multiple downstream tasks can ease this burden. Our method can be seen as a simplification of the recently proposed prefix tuning of Li and Liang (2021), and we provide a comparison to this and other similar approaches. Finally, we show that conditioning a frozen model with soft prompts confers benefits in robustness to domain transfer, as compared to full model tuning.
Prompts for pre-trained language models (PLMs) have shown remarkable performance by bridging the gap between pre-training tasks and various downstream tasks. Among these methods, prompt tuning, which freezes PLMs and only tunes soft prompts, provides an efficient and effective solution for adapting large-scale PLMs to downstream tasks. However, prompt tuning is yet to be fully explored. In our pilot experiments, we find that prompt tuning performs comparably with conventional full-model fine-tuning when downstream data are sufficient, whereas it performs much worse under few-shot learning settings, which may hinder the application of prompt tuning in practice. We attribute this low performance to the manner of initializing soft prompts. Therefore, in this work, we propose to pre-train prompts by adding soft prompts into the pre-training stage to obtain a better initialization. We name this Pre-trained Prompt Tuning framework PPT. To ensure the generalization of PPT, we formulate similar classification tasks into a unified task form and pre-train soft prompts for this unified task. Extensive experiments show that tuning pre-trained prompts for downstream tasks can reach or even outperform full-model fine-tuning under both full-data and few-shot settings. Our approach is effective and efficient for using large-scale PLMs in practice.
Classifying the core textual components of a scientific paper-title, author, body text, etc.-is a critical first step in automated scientific document understanding. Previous work has shown how using elementary layout information, i.e., each tokens 2D position on the page, leads to more accurate classification. We introduce new methods for incorporating VIsual LAyout (VILA) structures, e.g., the grouping of page texts into text lines or text blocks, into language models to further improve performance. We show that the I-VILA approach, which simply adds special tokens denoting the boundaries of layout structures into model inputs, can lead to 1.9% Macro F1 improvements for token classification. Moreover, we design a hierarchical model, H-VILA, that encodes the text based on layout structures and record an up-to 47% inference time reduction with less than 1.5% Macro F1 loss for the text classification models. Experiments are conducted on a newly curated evaluation suite, S2-VLUE, with a novel metric measuring classification uniformity within visual groups and a new dataset of gold annotations covering papers from 19 scientific disciplines. Pre-trained weights, benchmark datasets, and source code will be available at https://github.com/allenai/VILA.