Do you want to publish a course? Click here

PTR: Prompt Tuning with Rules for Text Classification

68   0   0.0 ( 0 )
 Added by Han Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Fine-tuned pre-trained language models (PLMs) have achieved awesome performance on almost all NLP tasks. By using additional prompts to fine-tune PLMs, we can further stimulate the rich knowledge distributed in PLMs to better serve downstream tasks. Prompt tuning has achieved promising results on some few-class classification tasks such as sentiment classification and natural language inference. However, manually designing lots of language prompts is cumbersome and fallible. For those auto-generated prompts, it is also expensive and time-consuming to verify their effectiveness in non-few-shot scenarios. Hence, it is still challenging for prompt tuning to address many-class classification tasks. To this end, we propose prompt tuning with rules (PTR) for many-class text classification and apply logic rules to construct prompts with several sub-prompts. In this way, PTR is able to encode prior knowledge of each class into prompt tuning. We conduct experiments on relation classification, a typical and complicated many-class classification task, and the results show that PTR can significantly and consistently outperform existing state-of-the-art baselines. This indicates that PTR is a promising approach to take advantage of both human prior knowledge and PLMs for those complicated classification tasks.

rate research

Read More

Tuning pre-trained language models (PLMs) with task-specific prompts has been a promising approach for text classification. Particularly, previous studies suggest that prompt-tuning has remarkable superiority in the low-data scenario over the generic fine-tuning methods with extra classifiers. The core idea of prompt-tuning is to insert text pieces, i.e., template, to the input and transform a classification problem into a masked language modeling problem, where a crucial step is to construct a projection, i.e., verbalizer, between a label space and a label word space. A verbalizer is usually handcrafted or searched by gradient descent, which may lack coverage and bring considerable bias and high variances to the results. In this work, we focus on incorporating external knowledge into the verbalizer, forming a knowledgeable prompt-tuning (KPT), to improve and stabilize prompt-tuning. Specifically, we expand the label word space of the verbalizer using external knowledge bases (KBs) and refine the expanded label word space with the PLM itself before predicting with the expanded label word space. Extensive experiments on zero and few-shot text classification tasks demonstrate the effectiveness of knowledgeable prompt-tuning.
Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Universal Language Model Fine-tuning (ULMFiT), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a language model. Our method significantly outperforms the state-of-the-art on six text classification tasks, reducing the error by 18-24% on the majority of datasets. Furthermore, with only 100 labeled examples, it matches the performance of training from scratch on 100x more data. We open-source our pretrained models and code.
152 - Bruce Nguyen , Shaoxiong Ji 2021
The massive growth of digital biomedical data is making biomedical text indexing and classification increasingly important. Accordingly, previous research has devised numerous deep learning techniques focused on using feedforward, convolutional or recurrent neural architectures. More recently, fine-tuned transformers-based pretrained models (PTMs) have demonstrated superior performance compared to such models in many natural language processing tasks. However, the direct use of PTMs in the biomedical domain is only limited to the target documents, ignoring the rich semantic information in the label descriptions. In this paper, we develop an improved label attention-based architecture to inject semantic label description into the fine-tuning process of PTMs. Results on two public medical datasets show that the proposed fine-tuning scheme outperforms the conventionally fine-tuned PTMs and prior state-of-the-art models. Furthermore, we show that fine-tuning with the label attention mechanism is interpretable in the interpretability study.
Recent years, the approaches based on neural networks have shown remarkable potential for sentence modeling. There are two main neural network structures: recurrent neural network (RNN) and convolution neural network (CNN). RNN can capture long term dependencies and store the semantics of the previous information in a fixed-sized vector. However, RNN is a biased model and its ability to extract global semantics is restricted by the fixed-sized vector. Alternatively, CNN is able to capture n-gram features of texts by utilizing convolutional filters. But the width of convolutional filters restricts its performance. In order to combine the strengths of the two kinds of networks and alleviate their shortcomings, this paper proposes Attention-based Multichannel Convolutional Neural Network (AMCNN) for text classification. AMCNN utilizes a bi-directional long short-term memory to encode the history and future information of words into high dimensional representations, so that the information of both the front and back of the sentence can be fully expressed. Then the scalar attention and vectorial attention are applied to obtain multichannel representations. The scalar attention can calculate the word-level importance and the vectorial attention can calculate the feature-level importance. In the classification task, AMCNN uses a CNN structure to cpture word relations on the representations generated by the scalar and vectorial attention mechanism instead of calculating the weighted sums. It can effectively extract the n-gram features of the text. The experimental results on the benchmark datasets demonstrate that AMCNN achieves better performance than state-of-the-art methods. In addition, the visualization results verify the semantic richness of multichannel representations.
Recently, prompt-tuning has achieved promising results for certain few-shot classification tasks. The core idea of prompt-tuning is to insert text pieces (i.e., templates) into the input and transform a classification task into a masked language modeling problem. However, for relation extraction, determining an appropriate prompt template requires domain expertise, and it is cumbersome and time-consuming to obtain a suitable label word. Furthermore, there exist abundant semantic knowledge among the entities and relations that cannot be ignored. To this end, we focus on incorporating knowledge into prompt-tuning for relation extraction and propose a knowledge-aware prompt-tuning approach with synergistic optimization (KnowPrompt). Specifically, we inject entity and relation knowledge into prompt construction with learnable virtual template words as well as answer words and synergistically optimize their representation with knowledge constraints. Extensive experimental results on five datasets with standard and low-resource settings demonstrate the effectiveness of our approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا