Do you want to publish a course? Click here

Controllable entangled state distribution in a dual-rail reconfigurable optical network

128   0   0.0 ( 0 )
 Added by Shuto Osawa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reconfigurable distribution of entangled states is essential for operation of quantum networks connecting multiple devices such as quantum memories and quantum computers. We introduce new quantum distribution network architecture enabling control of the entangled state propagation direction using linear-optical devices and phase shifters and offering reconfigurable connections between multiple quantum nodes. The basic two-photon entanglement distribution scheme is first introduced to illustrate the principle of operation. The scheme is then extended to a network structure with increased number of spatial modes connecting potential end-users. We present several examples of controllable network configuration modifications using time-dependent phase shifters.



rate research

Read More

Todays most widely used method of encoding quantum information in optical qubits is the dual-rail basis, often carried out through the polarisation of a single photon. On the other hand, many stationary carriers of quantum information - such as atoms - couple to light via the single-rail encoding in which the qubit is encoded in the number of photons. As such, interconversion between the two encodings is paramount in order to achieve cohesive quantum networks. In this paper, we demonstrate this by generating an entangled resource between the two encodings and using it to teleport a dual-rail qubit onto its single-rail counterpart. This work completes the set of tools necessary for the interconversion between the three primary encodings of the qubit in the optical field: single-rail, dual-rail and continuous-variable.
We present a proof-of-principle experimental demonstration of a reconfigurable entanglement distribution scheme utilizing a poled fiber-based source of broadband polarization-entangled photon pairs and dense wavelength-division multiplexing. A large bandwidth (> 90 nm, centered at 1555 nm) and highly spectrally correlated nature of the entangled source can be exploited to allow for the generation of more than 25 frequency-conjugate entangled pairs when aligned to the standard 200 GHz ITU grid. In this work, three frequency-conjugate entangled pairs are used to demonstrate quantum key distribution, with the wavelength-selective switching done manually. The entangled pairs are delivered over 40 km of actual fiber, and an estimated secure key rate of up to 20 bits/s per bi-party is obtained.
We propose and implement a novel scheme for dissipatively pumping two qubits into a singlet Bell state. The method relies on a process of collective optical pumping to an excited level, to which all states apart from the singlet are coupled. We apply the method to deterministically entangle two trapped ${}^{40}text{Ca}^+$ ions with a fidelity of $93(1)%$. We theoretically analyze the performance and error susceptibility of the scheme and find it to be insensitive to a large class of experimentally relevant noise sources.
We describe how an ensemble of four-level atoms in the diamond-type configuration can be applied to create a fully controllable effective coupling between two cavity modes. The diamond-type configuration allows one to use a bimodal cavity that supports modes of different frequencies or different circular polarisations, because each mode is coupled only to its own transition. This system can be used for mapping a quantum state of one cavity mode onto the other mode on demand. Additionally, it can serve as a fast opening high-Q cavity system that can be easily and coherently controlled with laser fields.
We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا