Do you want to publish a course? Click here

Entangled Quantum Key Distribution Over Two Free-Space Optical Links

246   0   0.0 ( 0 )
 Added by Christopher Erven
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the first real-time implementation of a quantum key distribution (QKD) system using entangled photon pairs that are sent over two free-space optical telescope links. The entangled photon pairs are produced with a type-II spontaneous parametric down-conversion source placed in a central, potentially untrusted, location. The two free-space links cover a distance of 435 m and 1,325 m respectively, producing a total separation of 1,575 m. The system relies on passive polarization analysis units, GPS timing receivers for synchronization, and custom written software to perform the complete QKD protocol including error correction and privacy amplification. Over 6.5 hours during the night, we observed an average raw key generation rate of 565 bits/s, an average quantum bit error rate (QBER) of 4.92%, and an average secure key generation rate of 85 bits/s.



rate research

Read More

A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.
A working free-space quantum key distribution (QKD) system has been developed and tested over a 205-m indoor optical path at Los Alamos National Laboratory under fluorescent lighting conditions. Results show that free-space QKD can provide secure real-time key distribution between parties who have a need to communicate secretly.
We study information theoretical security for space links between a satellite and a ground-station. Quantum key distribution (QKD) is a well established method for information theoretical secure communication, giving the eavesdropper unlimited access to the channel and technological resources only limited by the laws of quantum physics. But QKD for space links is extremely challenging, the achieved key rates are extremely low, and day-time operating impossible. However, eavesdropping on a channel in free-space without being noticed seems complicated, given the constraints imposed by orbital mechanics. If we also exclude eavesdroppers presence in a given area around the emitter and receiver, we can guarantee that he has only access to a fraction of the optical signal. In this setting, quantum keyless private (direct) communication based on the wiretap channel model is a valid alternative to provide information theoretical security. Like for QKD, we assume the legitimate users to be limited by state-of-the-art technology, while the potential eavesdropper is only limited by physical laws: physical measurement (Helstrom detector) and quantum electrodynamics (Holevo bound). Nevertheless, we demonstrate information theoretical secure communication rates (positive keyless private capacity) over a classical-quantum wiretap channel using on-off-keying of coherent states. We present numerical results for a setting equivalent to the recent experiments with the Micius satellite and compare them to the fundamental limit for the secret key rate of QKD. We obtain much higher rates compared with QKD with exclusion area of less than 13 meters for Low Earth Orbit (LEO) satellites. Moreover, we show that the wiretap channel quantum keyless privacy is much less sensitive to noise and signal dynamics and daytime operation is possible.
Based on the firm laws of physics rather than unproven foundations of mathematical complexity, quantum cryptography provides a radically different solution for encryption and promises unconditional security. Quantum cryptography systems are typically built between two nodes connected to each other through fiber optic. This chapter focuses on quantum cryptography systems operating over free-space optical channels as a cost-effective and license-free alternative to fiber optic counterparts. It provides an overview of the different parts of an experimental free-space quantum communication link developed in the Spanish National Research Council (Madrid, Spain).
Technological realities limit terrestrial quantum key distribution (QKD) to single-link distances of a few hundred kilometers. One promising avenue for global-scale quantum communication networks is to use low-Earth-orbit satellites. Here we report the first demonstration of QKD from a stationary transmitter to a receiver platform traveling at an angular speed equivalent to a 600 km altitude satellite, located on a moving truck. We overcome the challenges of actively correcting beam pointing, photon polarization and time-of-flight. Our system generates an asymptotic secure key at 40 bits/s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا