No Arabic abstract
We combined the bond order length strength and bond charge models and the topological concept to obtain the nonbonding, bonding, and antibonding states of the T type WTe$_2$/MoS$_2$ heterostructure.The energy band projection method and electronic information entropy are remarkable approaches for analyzing the electronic properties of various structures based on DFT calculations. This study provides a new way to describe the electronic properties of T type heterostructures and calculate the electron and bonding state probabilities.
To date, germanene has only been synthesized on metallic substrates. A metallic substrate is usually detrimental for the two-dimensional Dirac nature of germanene because the important electronic states near the Fermi level of germanene can hybridize with the electronic states of the metallic substrate. Here we report the successful synthesis of germanene on molybdenum disulfide (MoS$_2$), a band gap material. Pre-existing defects in the MoS$_2$ surface act as preferential nucleation sites for the germanene islands. The lattice constant of the germanene layer (3.8 $pm$ 0.2 AA) is about 20% larger than the lattice constant of the MoS$_2$ substrate (3.16 AA). Scanning tunneling spectroscopy measurements and density functional theory calculations reveal that there are, besides the linearly dispersing bands at the $K$ points, two parabolic bands that cross the Fermi level at the $Gamma$ point.
Currently, there is a flurry of research interest on materials with an unconventional electronic structure, and we have already seen significant progress in their understanding and engineering towards real-life applications. The interest erupted with the discovery of graphene and topological insulators in the previous decade. The electrons in graphene simulate massless Dirac Fermions with a linearly dispersing Dirac cone in their band structure, while in topological insulators, the electronic bands wind non-trivially in momentum space giving rise to gapless surface states and bulk bandgap. Weyl semimetals in condensed matter systems are the latest addition to this growing family of topological materials. Weyl Fermions are known in the context of high energy physics since almost the beginning of quantum mechanics. They apparently violate charge conservation rules, displaying the chiral anomaly, with such remarkable properties recently theoretically predicted and experimentally verified to exist as low energy quasiparticle states in certain condensed matter systems. Not only are these new materials extremely important for our fundamental understanding of quantum phenomena, but also they exhibit completely different transport phenomena. For example, massless Fermions are susceptible to scattering from non-magnetic impurities. Dirac semimetals exhibit non-saturating extremely large magnetoresistance as a consequence of their robust electronic bands being protected by time reversal symmetry. These open up whole new possibilities for materials engineering and applications including quantum computing. In this review, we recapitulate some of the outstanding properties of WTe$_2$, namely, its non-saturating titanic magnetoresistance due to perfect electron and hole carrier balance up to a very high magnetic field observed for the very first time. (Continued. Please see the main article).
Two-dimensional (2D) tungsten disulfide (WS$_2$), tungsten diselenide (WSe$_2$), and tungsten ditelluride (WTe$_2$) draw increasing attention due to their attractive properties deriving from the heavy tungsten and chalcogenide atoms, but their mechanical properties are still mostly unknown. Here, we determine the intrinsic and air-aged mechanical properties of mono-, bi-, and trilayer (1-3L) WS$_2$, WSe$_2$ and WTe$_2$ using a complementary suite of experiments and theoretical calculations. High-quality 1L WS$_2$ has the highest Youngs modulus (302.4+-24.1 GPa) and strength (47.0+-8.6 GPa) of the entire family, overpassing those of 1L WSe$_2$ (258.6+-38.3 and 38.0+-6.0 GPa, respectively) and WTe$_2$ (149.1+-9.4 and 6.4+-3.3 GPa, respectively). However, the elasticity and strength of WS$_2$ decrease most dramatically with increased thickness among the three materials. We interpret the phenomenon by the different tendencies for interlayer sliding in equilibrium state and under in-plane strain and out-of-plane compression conditions in the indentation process, revealed by finite element method (FEM) and density functional theory (DFT) calculations including van der Waals (vdW) interactions. We also demonstrate that the mechanical properties of the high-quality 1-3L WS$_2$ and WSe$_2$ are largely stable in the air for up to 20 weeks. Intriguingly, the 1-3L WSe$_2$ shows increased modulus and strength values with aging in the air. This is ascribed to oxygen doping, which reinforces the structure. The present study will facilitate the design and use of 2D tungsten dichalcogenides in applications, such as strain engineering and flexible field-effect transistors (FETs).
The carrier dynamics and electronic structures of type-II Weyl semimetal candidates MoTe$_2$ and WTe$_2$ have been investigated by using temperature-dependent optical conductivity [$sigma(omega)$] spectra. Two kinds of Drude peaks (narrow and broad) have been separately observed. The width of the broad Drude peak increases with elevating temperature above the Debye temperature of about 130 K in the same way as those of normal metals, on the other hand, the narrow Drude peak becomes visible below 80 K and the width is rapidly suppressed with decreasing temperature. Because the temperature dependence of the narrow Drude peak is similar to that of a type-I Weyl semimetal TaAs, it was concluded to originate from Dirac carriers of Weyl bands. The result suggests that the conductance has the contribution of two kinds of carriers, normal semimetallic and Dirac carriers, and this observation is an evidence of type-II Weyl semimetals of MoTe$_2$ and WTe$_2$. The obtained $sigma(omega)$ spectra in the interband transition region can be explained by band structure calculations with a band renormalization owing to electron correlation.
By combining bulk sensitive soft-X-ray angular-resolved photoemission spectroscopy and accurate first-principles calculations we explored the bulk electronic properties of WTe$_2$, a candidate type-II Weyl semimetal featuring a large non-saturating magnetoresistance. Despite the layered geometry suggesting a two-dimensional electronic structure, we find a three-dimensional electronic dispersion. We report an evident band dispersion in the reciprocal direction perpendicular to the layers, implying that electrons can also travel coherently when crossing from one layer to the other. The measured Fermi surface is characterized by two well-separated electron and hole pockets at either side of the $Gamma$ point, differently from previous more surface sensitive ARPES experiments that additionally found a significant quasiparticle weight at the zone center. Moreover, we observe a significant sensitivity of the bulk electronic structure of WTe$_2$ around the Fermi level to electronic correlations and renormalizations due to self-energy effects, previously neglected in first-principles descriptions.