Do you want to publish a course? Click here

Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation

100   0   0.0 ( 0 )
 Added by Victor Besnier
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we tackle the detection of out-of-distribution (OOD) objects in semantic segmentation. By analyzing the literature, we found that current methods are either accurate or fast but not both which limits their usability in real world applications. To get the best of both aspects, we propose to mitigate the common shortcomings by following four design principles: decoupling the OOD detection from the segmentation task, observing the entire segmentation network instead of just its output, generating training data for the OOD detector by leveraging blind spots in the segmentation network and focusing the generated data on localized regions in the image to simulate OOD objects. Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA). We validate the soundness of our approach across numerous ablation studies. We also show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.

rate research

Read More

It has been well demonstrated that adversarial examples, i.e., natural images with visually imperceptible perturbations added, generally exist for deep networks to fail on image classification. In this paper, we extend adversarial examples to semantic segmentation and object detection which are much more difficult. Our observation is that both segmentation and detection are based on classifying multiple targets on an image (e.g., the basic target is a pixel or a receptive field in segmentation, and an object proposal in detection), which inspires us to optimize a loss function over a set of pixels/proposals for generating adversarial perturbations. Based on this idea, we propose a novel algorithm named Dense Adversary Generation (DAG), which generates a large family of adversarial examples, and applies to a wide range of state-of-the-art deep networks for segmentation and detection. We also find that the adversarial perturbations can be transferred across networks with different training data, based on different architectures, and even for different recognition tasks. In particular, the transferability across networks with the same architecture is more significant than in other cases. Besides, summing up heterogeneous perturbations often leads to better transfer performance, which provides an effective method of black-box adversarial attack.
99 - ZengShun Zhaoa 2021
While most existing segmentation methods usually combined the powerful feature extraction capabilities of CNNs with Conditional Random Fields (CRFs) post-processing, the result always limited by the fault of CRFs . Due to the notoriously slow calculation speeds and poor efficiency of CRFs, in recent years, CRFs post-processing has been gradually eliminated. In this paper, an improved Generative Adversarial Networks (GANs) for image semantic segmentation task (semantic segmentation by GANs, Seg-GAN) is proposed to facilitate further segmentation research. In addition, we introduce Convolutional CRFs (ConvCRFs) as an effective improvement solution for the image semantic segmentation task. Towards the goal of differentiating the segmentation results from the ground truth distribution and improving the details of the output images, the proposed discriminator network is specially designed in a full convolutional manner combined with cascaded ConvCRFs. Besides, the adversarial loss aggressively encourages the output image to be close to the distribution of the ground truth. Our method not only learns an end-to-end mapping from input image to corresponding output image, but also learns a loss function to train this mapping. The experiments show that our method achieves better performance than state-of-the-art methods.
In this work, we train a network to simultaneously perform segmentation and pixel-wise Out-of-Distribution (OoD) detection, such that the segmentation of unknown regions of scenes can be rejected. This is made possible by leveraging an OoD dataset with a novel contrastive objective and data augmentation scheme. By combining data including unknown classes in the training data, a more robust feature representation can be learned with known classes represented distinctly from those unknown. When presented with unknown classes or conditions, many current approaches for segmentation frequently exhibit high confidence in their inaccurate segmentations and cannot be trusted in many operational environments. We validate our system on a real-world dataset of unusual driving scenes, and show that by selectively segmenting scenes based on what is predicted as OoD, we can increase the segmentation accuracy by an IoU of 0.2 with respect to alternative techniques.
89 - Rui Huang , Yixuan Li 2021
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying machine learning models in the real world. Existing solutions are mainly driven by small datasets, with low resolution and very few class labels (e.g., CIFAR). As a result, OOD detection for large-scale image classification tasks remains largely unexplored. In this paper, we bridge this critical gap by proposing a group-based OOD detection framework, along with a novel OOD scoring function termed MOS. Our key idea is to decompose the large semantic space into smaller groups with similar concepts, which allows simplifying the decision boundaries between in- vs. out-of-distribution data for effective OOD detection. Our method scales substantially better for high-dimensional class space than previous approaches. We evaluate models trained on ImageNet against four carefully curated OOD datasets, spanning diverse semantics. MOS establishes state-of-the-art performance, reducing the average FPR95 by 14.33% while achieving 6x speedup in inference compared to the previous best method.
102 - Yingda Xia , Yi Zhang , Fengze Liu 2020
The ability to detect failures and anomalies are fundamental requirements for building reliable systems for computer vision applications, especially safety-critical applications of semantic segmentation, such as autonomous driving and medical image analysis. In this paper, we systematically study failure and anomaly detection for semantic segmentation and propose a unified framework, consisting of two modules, to address these two related problems. The first module is an image synthesis module, which generates a synthesized image from a segmentation layout map, and the second is a comparison module, which computes the difference between the synthesized image and the input image. We validate our framework on three challenging datasets and improve the state-of-the-arts by large margins, emph{i.e.}, 6% AUPR-Error on Cityscapes, 7% Pearson correlation on pancreatic tumor segmentation in MSD and 20% AUPR on StreetHazards anomaly segmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا