Do you want to publish a course? Click here

Synthesize then Compare: Detecting Failures and Anomalies for Semantic Segmentation

103   0   0.0 ( 0 )
 Added by Yingda Xia
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The ability to detect failures and anomalies are fundamental requirements for building reliable systems for computer vision applications, especially safety-critical applications of semantic segmentation, such as autonomous driving and medical image analysis. In this paper, we systematically study failure and anomaly detection for semantic segmentation and propose a unified framework, consisting of two modules, to address these two related problems. The first module is an image synthesis module, which generates a synthesized image from a segmentation layout map, and the second is a comparison module, which computes the difference between the synthesized image and the input image. We validate our framework on three challenging datasets and improve the state-of-the-arts by large margins, emph{i.e.}, 6% AUPR-Error on Cityscapes, 7% Pearson correlation on pancreatic tumor segmentation in MSD and 20% AUPR on StreetHazards anomaly segmentation.

rate research

Read More

Unsupervised domain adaptation (DA) has gained substantial interest in semantic segmentation. However, almost all prior arts assume concurrent access to both labeled source and unlabeled target, making them unsuitable for scenarios demanding source-free adaptation. In this work, we enable source-free DA by partitioning the task into two: a) source-only domain generalization and b) source-free target adaptation. Towards the former, we provide theoretical insights to develop a multi-head framework trained with a virtually extended multi-source dataset, aiming to balance generalization and specificity. Towards the latter, we utilize the multi-head framework to extract reliable target pseudo-labels for self-training. Additionally, we introduce a novel conditional prior-enforcing auto-encoder that discourages spatial irregularities, thereby enhancing the pseudo-label quality. Experiments on the standard GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes benchmarks show our superiority even against the non-source-free prior-arts. Further, we show our compatibility with online adaptation enabling deployment in a sequentially changing environment.
In this paper, we tackle the detection of out-of-distribution (OOD) objects in semantic segmentation. By analyzing the literature, we found that current methods are either accurate or fast but not both which limits their usability in real world applications. To get the best of both aspects, we propose to mitigate the common shortcomings by following four design principles: decoupling the OOD detection from the segmentation task, observing the entire segmentation network instead of just its output, generating training data for the OOD detector by leveraging blind spots in the segmentation network and focusing the generated data on localized regions in the image to simulate OOD objects. Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA). We validate the soundness of our approach across numerous ablation studies. We also show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
Attribute guided face image synthesis aims to manipulate attributes on a face image. Most existing methods for image-to-image translation can either perform a fixed translation between any two image domains using a single attribute or require training data with the attributes of interest for each subject. Therefore, these methods could only train one specific model for each pair of image domains, which limits their ability in dealing with more than two domains. Another disadvantage of these methods is that they often suffer from the common problem of mode collapse that degrades the quality of the generated images. To overcome these shortcomings, we propose attribute guided face image generation method using a single model, which is capable to synthesize multiple photo-realistic face images conditioned on the attributes of interest. In addition, we adopt the proposed model to increase the realism of the simulated face images while preserving the face characteristics. Compared to existing models, synthetic face images generated by our method present a good photorealistic quality on several face datasets. Finally, we demonstrate that generated facial images can be used for synthetic data augmentation, and improve the performance of the classifier used for facial expression recognition.
The recent integration of attention mechanisms into segmentation networks improves their representational capabilities through a great emphasis on more informative features. However, these attention mechanisms ignore an implicit sub-task of semantic segmentation and are constrained by the grid structure of convolution kernels. In this paper, we propose a novel squeeze-and-attention network (SANet) architecture that leverages an effective squeeze-and-attention (SA) module to account for two distinctive characteristics of segmentation: i) pixel-group attention, and ii) pixel-wise prediction. Specifically, the proposed SA modules impose pixel-group attention on conventional convolution by introducing an attention convolutional channel, thus taking into account spatial-channel inter-dependencies in an efficient manner. The final segmentation results are produced by merging outputs from four hierarchical stages of a SANet to integrate multi-scale contexts for obtaining an enhanced pixel-wise prediction. Empirical experiments on two challenging public datasets validate the effectiveness of the proposed SANets, which achieves 83.2% mIoU (without COCO pre-training) on PASCAL VOC and a state-of-the-art mIoU of 54.4% on PASCAL Context.
Scientific literature contains large volumes of unstructured data,with over 30% of figures constructed as a combination of multiple images, these compound figures cannot be analyzed directly with existing information retrieval tools. In this paper, we propose a semantic segmentation approach for compound figure separation, decomposing the compound figures into master images. Each master image is one part of a compound figure governed by a subfigure label (typically (a), (b), (c), etc). In this way, the separated subfigures can be easily associated with the description information in the caption. In particular, we propose an anchor-based master image detection algorithm, which leverages the correlation between master images and subfigure labels and locates the master images in a two-step manner. First, a subfigure label detector is built to extract the global layout information of the compound figure. Second, the layout information is combined with local features to locate the master images. We validate the effectiveness of proposed method on our labeled testing dataset both quantitatively and qualitatively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا