Do you want to publish a course? Click here

Design of the ULTRASAT UV camera

77   0   0.0 ( 0 )
 Added by Rolf Buehler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Ultraviolet Transient Astronomical Satellite (ULTRASAT) is a scientific UV space telescope that will operate in geostationary orbit. The mission, targeted to launch in 2024, is led by the Weizmann Institute of Science (WIS) in Israel and the Israel Space Agency (ISA). Deutsches Elektronen Synchrotron (DESY) in Germany is tasked with the development of the UV-sensitive camera at the heart of the telescope. The cameras total sensitive area of ~90mm x 90mm is built up by four back-side illuminated CMOS sensors, which image a field of view of ~200 deg2. Each sensor has 22.4 megapixels. The Schmidt design of the telescope locates the detector inside the optical path, limiting the overall size of the assembly. As a result, the readout electronics is located in a remote unit outside the telescope. The short focal length of the telescope requires an accurate positioning of the sensors within +-50 mu along the optical axis, with a flatness of +-10 mu. While the telescope will be at around 295K during operations, the sensors are required to be cooled to 200K for dark current reduction. At the same time, the ability to heat the sensors to 343K is required for decontamination. In this paper, we present the preliminary design of the UV sensitive ULTRASAT camera.



rate research

Read More

TolTEC is a new camera being built for the 50-meter Large Millimeter-wave Telescope (LMT) in Puebla, Mexico to survey distant galaxies and star-forming regions in the Milky Way. The optical design simultaneously couples the field of view onto focal planes at 150, 220, and 280 GHz. The optical design and detector properties, as well as a data-driven model of the atmospheric emission of the LMT site, inform the sensitivity model of the integrated instrument. This model is used to optimize the instrument design, and to calculate the mapping speed as an early forecast of the science reach of the instrument.
The Ultraviolet Transient Astronomical Satellite is a scientific space mission carrying an astronomical telescope. The mission is led by the Weizmann Institute of Science in Israel and the Israel Space Agency, while the camera in the focal plane is designed and built by Deutsches Elektronen Synchrotron in Germany. Two key science goals of the mission are the detection of counterparts to gravitational wave sources and supernovae. The launch to geostationary orbit is planned for 2024. The telescope with a field-of-view of $approx200$deg$^2$, is optimized to work in the near-ultraviolet band between $220$ and $280$nm. The focal plane array is composed of four $22.4$-megapixel, backside-illuminated CMOS sensors with a total active area of 90x90mm$^2$. Prior to sensor production, smaller test sensors have been tested to support critical design decisions for the final flight sensor. These test sensors share the design of epitaxial layer and anti-reflective coatings (ARC) with the flight sensors. Here, we present a characterization of these test sensors. Dark current and read noise are characterized as a function of the device temperature. A temperature-independent noise level is attributed to on-die infrared emission and the read-out electronics` self-heating. We utilize a high-precision photometric calibration setup to obtain the test sensors` quantum efficiency (QE) relative to PTB/NIST-calibrated transfer standards ($220$-$1100$nm), the quantum yield for $lambda < 300$nm, the non-linearity of the system, and the conversion gain. The uncertainties are discussed in the context of the newest results on the setup`s performance parameters. From three ARC options, Tstd, T1 and T2, the latter optimizes out-of-band rejection and peaks in the mid of the ULTRASAT operational waveband (max. QE $approx80%$ at $245mathrm{nm}$). We recommend ARC option T2 for the final ULTRASAT UV sensor.
82 - E. Moulin , C. Diaz , D. Durand 2015
The NectarCAM is a camera proposed for the medium-sized telescopes in the framework of the Cherenkov Telescope Array (CTA), the next-generation observatory for very-high-energy gamma-ray astronomy. The cameras are designed to operate in an open environment and their mechanics must provide protection for all their components under the conditions defined for the CTA observatory. In order to operate in a stable environment and ensure the best physics performance, each NectarCAM will be enclosed in a slightly overpressurized, nearly air-tight, camera body, to prevent dust and water from entering. The total power dissipation will be ~7.7 kW for a 1855-pixel camera. The largest fraction is dissipated by the readout electronics in the modules. We present the design and implementation of the cooling system together with the test bench results obtained on the NectarCAM thermal demonstrator.
The Cherenkov Telescope Array (CTA) is the next-generation ground-based observatory for very-high-energy gamma-ray astronomy. An innovative 9.7 m aperture, dual-mirror Schwarzschild-Couder Telescope (SCT) design is a candidate design for CTA Medium-Sized Telescopes. A prototype SCT (pSCT) has been constructed at the Fred Lawrence Whipple Observatory in Arizona, USA. Its camera is currently partially instrumented with 1600 pixels covering a field of view of 2.7 degrees square. The small plate scale of the optical system allows densely packed silicon photomultipliers to be used, which combined with high-density trigger and waveform readout electronics enable the high-resolution camera. The cameras electronics are capable of imaging air shower development at a rate of one billion samples per second. We describe the commissioning and performance of the pSCT camera, including trigger and waveform readout performance, calibration, and absolute GPS time stamping. We also present the upgrade to the camera, which is currently underway. The upgrade will fully populate the focal plane, increasing the field of view to 8 degree diameter, and lower the front-end electronics noise, enabling a lower trigger threshold and improved reconstruction and background rejection.
ASTRI is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The primary goal of the ASTRI project is the realization of an end-to-end prototype of a Small Size Telescope for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, is based on a completely new double mirror optics design and will be equipped with a camera made of a matrix of SiPM detectors. Here we describe the ASTRI SST-2M camera concept: basic idea, detectors, electronics, current status and some results coming from experiments in lab.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا