Do you want to publish a course? Click here

Near-field imaging of plasmonic nanopatch antennas with integrated semiconductor quantum dots

79   0   0.0 ( 0 )
 Added by Benjamin Lawrie
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential to an improved understanding of the plasmon-emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas with cathodoluminescence microscopy. Further, we explore the distinction between optical and electron-beam spectroscopies of coupled plasmon-exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron-beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon-exciton interactions in nanopatch antennas that is essential to myriad emerging quantum photonic devices.



rate research

Read More

Plasmonic enhancement of nonlinear optical processes confront severe limitations arising from the strong dispersion of metal susceptibilities and small interaction volumes that hamper desirable phase-matching-like conditions. Maximizing nonlinear interactions in nanoscale systems require simultaneous excitation of resonant modes that spatially and constructively overlap at all wavelengths involved in the process. Here, we present a hybrid rectangular patch antenna design for optimal second harmonic generation (SHG) that is characterized by a non-centrosymmetric dielectric/ferroelectric material at the plasmonic hot spot. The optimization of the rectangular patch allows for the independent tuning of various modes of resonances that can be used to enhance the SHG process. We explore the angular dependence of SHG in these hybrid structures and highlight conditions necessary for maximal SHG efficiency. Furthermore, we propose a novel configuration with a periodically-poled ferroelectric layer for orders-of-magnitude enhanced SHG at normal incidence. Such a platform may enable the development of integrated nanoscale light sources and on-chip frequency converters.
115 - Ming Li , Xiao Xiong , Le Yu 2017
Strong light-matter interaction and high-efficiency optical collection of fluorescence from quantum emitters are crucial topics in quantum and nanophotonic fields. High-quality cavities, dispersive photonic crystal waveguides and even plasmonic structures have been used to enhance the interaction with quantum emitters, thus realize efficient collection of the fluorescence. In this work, a new method is proposed to collect the fluorescence of quantum dots (QDs) with a fiber-integrated multimode silver nanowire (AgNW) waveguide. Fluorescence lifetime measurement is performed to investigate the coupling between QDs and different plasmonic modes. Compared with far-field collection method, the AgNW-fiber probe can realize near-unity collection efficiency theoretically. This fiber-integrated plasmonic probe may be useful in the area of nanophotonics and also promising for quantum information devices.
Optical near-field interactions between nanostructured matter, such as quantum dots, result in unidirectional optical excitation transfer when energy dissipation is induced. This results in versatile spatiotemporal dynamics of the optical excitation, which can be controlled by engineering the dissipation processes and exploited to realize intelligent capabilities such as solution searching and decision making. Here we experimentally demonstrate the ability to solve a decision making problem on the basis of optical excitation transfer via near-field interactions by using colloidal quantum dots of different sizes, formed on a geometry-controlled substrate. We characterize the energy transfer behavior due to multiple control light patterns and experimentally demonstrate the ability to solve the multi-armed bandit problem. Our work makes a decisive step towards the practical design of nanophotonic systems capable of efficient decision making, one of the most important intellectual attributes of the human brain.
We report a type of solar cells based on graphene/CdTe Schottky heterostructure, which can be improved by surface engineering as graphene is one-atomic thin. By coating a layer of ultrathin CdSe quantum dots onto graphene/CdTe heterostructure, the power conversion efficiency is increased from 2.08% to 3.1%. Photo-induced doping is mainly accounted for this enhancement, as evidenced by transport, photoluminescence and quantum efficiency measurements. This work demonstrates a feasible way of designing solar cells with incorporating one dimensional and two dimensional materials.
Deterministic fractal antennas are employed to realize multimodal plasmonic devices. Such structures show strongly enhanced localized electromagnetic fields typically in the infrared range with a hierarchical spatial distribution. Realization of engineered fractal antennas operating in the optical regime would enable nanoplasmonic platforms for applications, such as energy harvesting, light sensing, and bio/chemical detection. Here, we introduce a novel plasmonic multiband metamaterial based on the Sierpinski carpet (SC) space-filling fractal, having a tunable and polarization-independent optical response, which exhibits multiple resonances from the visible to mid-infrared range. We investigate gold SCs fabricated by electron-beam lithography on CaF$_{2}$ and Si/SiO$_{2}$ substrates. Furthermore, we demonstrate that such resonances originate from diffraction-mediated localized surface plasmons, which can be tailored in deterministic fashion by tuning the shape, size, and position of the fractal elements. Moreover, our findings illustrate that SCs with high order of complexity present a strong and hierarchically distributed electromagnetic near-field of the plasmonic modes. Therefore, engineered plasmonic SCs provide an efficient strategy for the realization of compact active devices with a strong and broadband spectral response in the visible/mid-infrared range. We take advantage of such a technology by carrying out surface enhanced Raman spectroscopy (SERS) on Brilliant Cresyl Blue molecules deposited onto plasmonic SCs. We achieve a broadband SERS enhancement factor up to $10^{4}$, thereby providing a proof-of-concept application for chemical diagnostics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا