Do you want to publish a course? Click here

Comparing hypervelocity star populations from the Large Magellanic Cloud and the Milky Way

94   0   0.0 ( 0 )
 Added by Fraser Evans
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We predict and compare the distributions and properties of hyper-velocity stars (HVSs) ejected from the centres of the Milky Way (MW) and the Large Magellanic Cloud (LMC). In our model, HVSs are ejected at a constant rate -- equal in both galaxies -- via the Hills mechanism and are propagated in a combined potential, where the LMC orbits the MW on its first infall. By selecting $m>2, mathrm{M_odot}$ HVSs well-separated from the Magellanic Clouds and Galactic midplane, we identify mock HVSs which would stand out from ordinary stars in the stellar halo in future data releases from the Gaia satellite and the Vera C. Rubin Observatorys Legacy Survey of Space and Time (LSST). We find that in these deep surveys, LMC HVSs will outnumber MW ones by a factor $sim 2.5$, as HVSs can more easily escape from the shallower potential of the LMC. At an assumed HVS ejection rate of $10^{-4} , mathrm{yr^{-1}}$, HVSs detectable in the final Gaia data release and LSST from the LMC (MW) will number $125_{-12}^{+11}$ ($50_{-8}^{+7}$) and $140_{-11}^{+10}$ ($42_{-7}^{+6}$), respectively. The MW and LMC HVS populations show different kinematics and spatial distributions. While LMC HVSs have more modest total velocities and larger Galactocentric distances clustered around those of the LMC itself, HVSs from the MW show broader distributions, including a prominent high-velocity tail above $500 , mathrm{km s^{-1}}$ that contains at least half of the stars. These predictions are robust against reasonable variation of the Galactic potential and of the LMC central black hole mass.



rate research

Read More

111 - Warren R. Brown 2010
We use Hubble Space Telescope imaging to measure the absolute proper motion of the hypervelocity star (HVS) HE 0437-5439, a short-lived B star located in the direction of the Large Magellanic Cloud (LMC). We observe (mu_alpha, mu_delta)=(+0.53+-0.25(stat)+-0.33(sys), +0.09+-0.21(stat)+-0.48(sys)) mas/yr. The velocity vector points directly away from the center of the Milky Way; an origin from the center of the LMC is ruled out at the 3-sigma level. The flight time of the HVS from the Milky Way exceeds its main-sequence lifetime, thus its stellar nature requires it to be a blue straggler. The large space velocity rules out a Galactic-disk ejection. Combining the HVSs observed trajectory, stellar nature, and required initial velocity, we conclude that HE 0437-5439 was most likely a compact binary ejected by the Milky Ways central black hole.
We present a new theoretical population synthesis model (the Galaxy Model) to examine and deal with large amounts of data from surveys of the Milky Way and to decipher the present and past structure and history of our own Galaxy. We assume the Galaxy to consist of a superposition of many composite stellar populations belonging to the thin and thick disks, the stellar halo and the bulge, and to be surrounded by a single dark matter halo component. A global model for the Milky Ways gravitational potential is built up self-consistently with the density profiles from the Poisson equation. In turn, these density profiles are used to generate synthetic probability distribution functions (PDFs) for the distribution of stars in colour-magnitude diagrams (CMDs). Finally, the gravitational potential is used to constrain the stellar kinematics by means of the moment method on a (perturbed)-distribution function. Spiral arms perturb the axisymmetric disk distribution functions in the linear response framework of density-wave theory where we present an analytical formula of the so-called `reduction factor using Hypergeometric functions. Finally, we consider an analytical non-axisymmetric model of extinction and an algorithm based on the concept of probability distribution function to handle colour magnitude diagrams with a large number of stars. A genetic algorithm is presented to investigate both the photometric and kinematic parameter space. This galaxy model represents the natural framework to reconstruct the structure of the Milky Way from the heterogeneous data set of surveys such as Gaia-ESO, SEGUE, APOGEE2, RAVE and the Gaia mission.
The Cepheid Period-Luminosity (PL) relation is the key tool for measuring astronomical distances and for establishing the extragalactic distance scale. In particular, the local value of the Hubble constant ($H_0$) strongly depends on Cepheid distance measurements. The recent Gaia Data Releases and other parallax measurements from the Hubble Space Telescope (HST) already enabled to improve the accuracy of the slope ($alpha$) and intercept ($beta$) of the PL relation. However, the dependence of this law on metallicity is still largely debated. In this paper, we combine three samples of Cepheids in the Milky Way (MW), the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) in order to derive the metallicity term (hereafter $gamma$) of the PL relation. The recent publication of extremely precise LMC and SMC distances based on late-type detached eclipsing binary systems (DEBs) provides a solid anchor for the Magellanic Clouds. In the MW, we adopt Cepheid parallaxes from the early third Gaia Data Release. We derive the metallicity effect in $V$, $I$, $J$, $H$, $K_S$, $W_{VI}$ and $W_{JK}$. In the $K_S$ band we report a metallicity effect of $-0.221 pm 0.051$ mag/dex, the negative sign meaning that more metal-rich Cepheids are intrinsically brighter than their more metal-poor counterparts of the same pulsation period.
We present ESO/VLT FORS2 low resolution spectroscopy of red giant branch stars in three massive, intermediate age ($sim 1.7-2.3$ Gyr) star clusters in the Large Magellanic Cloud. We measure CH and CN index bands at 4300A, and 3883A, as well as [C/Fe] and [N/Fe] abundance ratios for 24, 21 and 12 member stars of NGC 1978, NGC 1651, NGC 1783, respectively. We find a significant intrinsic spread in CN in NGC 1978 and NGC 1651, a signal of multiple stellar populations (MPs) within the clusters. On the contrary, we report a null CN spread in NGC 1783 within our measurement precision. For NGC 1978, we separated the two populations in the CN distribution and we translated the CN spread into an internal N variation $Delta$[N/Fe]$=0.63pm0.49$ dex. For NGC 1651 and NGC 1783, we put upper limits on the N abundance variations of $Delta$[N/Fe]$leq 0.2, 0.4$ dex, respectively. The spectroscopic analysis confirms previous results from HST photometry, where NGC 1978 was found to host MPs in the form of N spreads, while slightly younger clusters (e.g. NGC 1783, $<$ 2 Gyr old) were not, within the limits of the uncertainties. It also confirms that intermediate age massive clusters show lower N abundance variations with respect to the ancient globular clusters, although this is in part due to the effect of the first dredge up at these stellar masses, as recently reported in the literature. We stress the importance of future studies to estimate the initial N abundance variations, free of stellar evolutionary mixing processes, by observing unevolved stars in young clusters.
We present a morphological analysis of the feature-rich 2MASS LMC color-magnitude diagram, identifying Galactic and LMC populations and estimating the density of LMC populations alone. We also present the projected spatial distributions of various stellar populations. Major populations are identified based on matching morphological features of the CMD with expected positions of known populations, isochrone fits, and analysis of the projected spatial distributions. The LMC populations along the first-ascent RGB and AGB are quantified. We find the RGB tip at $K_s=12.3pm0.1$. Preliminary isochrone analysis is done for giant populations in the bar and the outer regions of the Cloud. We find no significant differences in metallicities and ages between the fields. The observed LMC giant branch is well-fit by published tracks in the CIT/CTIO system with a distance modulus of $mu=18.5pm0.1$, reddening $E_{B-V}=0.15-0.20$, metallicity $Z=0.004^{+0.002}_{-0.001}$ and age 3-13 Gyr. Analysis of deep 2MASS engineering data with six times the standard exposure produces similar estimates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا