Do you want to publish a course? Click here

On the Nitrogen variation in ~2 Gyr old massive star clusters in the Large Magellanic Cloud

99   0   0.0 ( 0 )
 Added by Silvia Martocchia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ESO/VLT FORS2 low resolution spectroscopy of red giant branch stars in three massive, intermediate age ($sim 1.7-2.3$ Gyr) star clusters in the Large Magellanic Cloud. We measure CH and CN index bands at 4300A, and 3883A, as well as [C/Fe] and [N/Fe] abundance ratios for 24, 21 and 12 member stars of NGC 1978, NGC 1651, NGC 1783, respectively. We find a significant intrinsic spread in CN in NGC 1978 and NGC 1651, a signal of multiple stellar populations (MPs) within the clusters. On the contrary, we report a null CN spread in NGC 1783 within our measurement precision. For NGC 1978, we separated the two populations in the CN distribution and we translated the CN spread into an internal N variation $Delta$[N/Fe]$=0.63pm0.49$ dex. For NGC 1651 and NGC 1783, we put upper limits on the N abundance variations of $Delta$[N/Fe]$leq 0.2, 0.4$ dex, respectively. The spectroscopic analysis confirms previous results from HST photometry, where NGC 1978 was found to host MPs in the form of N spreads, while slightly younger clusters (e.g. NGC 1783, $<$ 2 Gyr old) were not, within the limits of the uncertainties. It also confirms that intermediate age massive clusters show lower N abundance variations with respect to the ancient globular clusters, although this is in part due to the effect of the first dredge up at these stellar masses, as recently reported in the literature. We stress the importance of future studies to estimate the initial N abundance variations, free of stellar evolutionary mixing processes, by observing unevolved stars in young clusters.



rate research

Read More

We used resolved star counts from Hubble Space Telescope images to determine the center of gravity and the projected density profiles of 6 old globular clusters in the Large Magellanic Cloud (LMC), namely NGC 1466, NGC 1841, NGC 1898, NGC 2210, NGC 2257 and Hodge 11. For each system, the LMC field contribution was properly taken into account by making use, when needed, of parallel HST observations. The derived values of the center of gravity may differ by several arcseconds (corresponding to more than 1 pc at the distance of the LMC) from previous determinations. The cluster density profiles are all well fit by King models, with structural parameters that may differ from the literature ones by even factors of two. Similarly to what observed for Galactic globular clusters, the ratio between the effective and the core radii has been found to anti-correlate with the cluster dynamical age.
169 - Doug Geisler 1997
We report the first results of a color-magnitude diagram survey of 25 candidate old LMC clusters. For almost all of the sample, it was possible to reach the turnoff region, and in many clusters we have several magnitudes of the main sequence. Age estimates based on the magnitude difference $delta T_1$ between the giant branch clump and the turnoff revealed that no new old clusters were found. The candidates turned out to be of intermediate age (1-3 Gyr) We show that the apparently old ages as inferred from integrated UBV colors can be explained by a combination of stochastic effects produced by bright stars and by photometric errors for faint clusters lying in crowded fields. The relatively metal poor candidates from the CaII triplet spectroscopy also turned out to be of intermediate age. This, combined with the fact that they lie far out in the disk, yields interesting constraints regarding the formation and evolution of the LMC disk. We also study the age distribution of intermediate age and old clusters This homogeneous set of accurate relative ages allows us to make an improved study of the history of cluster formation/destruction for ages $>1$Gyr. We confirm previous indications that there was apparently no cluster formation in the LMC during the period from 3-8 Gyr ago, and that there was a pronounced epoch of cluster formation beginning 3 Gyrs ago that peaked at about 1.5 Gyrs ago. Our results suggest that there are few, if any, genuine old clusters in the LMC left to be found.
The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (~100 km/s) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birth places at the very beginning of their parent clusters dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach however is complicated by the large distance to the LMC, which makes accurate proper motion measurements difficult. We use an alternative approach for solving the problem, based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion and thereby to determine their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars which were suggested in the literature as candidate runaway stars. Using archival (Spitzer Space Telescope) data, we found a bow shock associated with one of our program stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ~120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star forming complex.
The Large Magellanic Cloud (LMC), the closest star forming galaxy with low metallicity, provides an ideal laboratory to study star formation in such an environment. The classical dense molecular gas thermometer NH3 is rarely available in a low metallicity environment because of photoionization and a lack of nitrogen atoms. Our goal is to directly measure the gas kinetic temperature with formaldehyde toward six star-forming regions in the LMC. Three rotational transitions of para-H2CO near 218 GHz were observed with the APEX 12m telescope toward six star forming regions in the LMC. Those data are complemented by C18O 2-1 spectra. Using non-LTE modeling with RADEX, we derive the gas kinetic temperature and spatial density, using as constraints the measured para-H2CO 321-220/303-202 and para-H2CO 303-202/C18O 2-1 ratios. Excluding the quiescent cloud N159S, where only one para-H2CO line could be detected, the gas kinetic temperatures derived from the preferred para-H2CO 321-220/303-202 line ratios range from 35 to 63 K with an average of 47 K. Spatial densities of the gas derived from the paraH2CO 303-202/C18O 2-1 line ratios yield 0.4-2.9x10^5 cm^-3 with an average of 1.5x10^5 cm^-3. Temperatures derived from the para-H2CO line ratio are similar to those obtained with the same method from Galactic star forming regions and agree with results derived from CO in the dense regions of the LMC. A comparison of kinetic temperatures derived from para-H2CO with those from the dust also shows good agreement. This suggests that the dust and para-H2CO are well mixed in the studied star forming regions. A correlation between the gas kinetic temperatures derived from para-H2CO and infrared luminosity, represented by the 250um flux, suggests that the kinetic temperatures traced by para-H2CO are correlated with the ongoing massive star formation in the LMC.
We predict and compare the distributions and properties of hyper-velocity stars (HVSs) ejected from the centres of the Milky Way (MW) and the Large Magellanic Cloud (LMC). In our model, HVSs are ejected at a constant rate -- equal in both galaxies -- via the Hills mechanism and are propagated in a combined potential, where the LMC orbits the MW on its first infall. By selecting $m>2, mathrm{M_odot}$ HVSs well-separated from the Magellanic Clouds and Galactic midplane, we identify mock HVSs which would stand out from ordinary stars in the stellar halo in future data releases from the Gaia satellite and the Vera C. Rubin Observatorys Legacy Survey of Space and Time (LSST). We find that in these deep surveys, LMC HVSs will outnumber MW ones by a factor $sim 2.5$, as HVSs can more easily escape from the shallower potential of the LMC. At an assumed HVS ejection rate of $10^{-4} , mathrm{yr^{-1}}$, HVSs detectable in the final Gaia data release and LSST from the LMC (MW) will number $125_{-12}^{+11}$ ($50_{-8}^{+7}$) and $140_{-11}^{+10}$ ($42_{-7}^{+6}$), respectively. The MW and LMC HVS populations show different kinematics and spatial distributions. While LMC HVSs have more modest total velocities and larger Galactocentric distances clustered around those of the LMC itself, HVSs from the MW show broader distributions, including a prominent high-velocity tail above $500 , mathrm{km s^{-1}}$ that contains at least half of the stars. These predictions are robust against reasonable variation of the Galactic potential and of the LMC central black hole mass.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا