No Arabic abstract
Air traffic management (ATM) of manned and unmanned aerial vehicles (AVs) relies critically on ubiquitous location tracking. While technologies exist for AVs to broadcast their location periodically and for airports to track and detect AVs, methods to verify the broadcast locations and complement the ATM coverage are urgently needed, addressing anti-spoofing and safe coexistence concerns. In this work, we propose an ATM solution by exploiting noncoherent crowdsourced wireless networks (CWNs) and correcting the inherent clock-synchronization problems present in such non-coordinated sensor networks. While CWNs can provide a great number of measurements for ubiquitous ATM, these are normally obtained from unsynchronized sensors. This article first presents an analysis of the effects of lack of clock synchronization in ATM with CWN and provides solutions based on the presence of few trustworthy sensors in a large non-coordinated network. Secondly, autoregressive-based and long short-term memory (LSTM)-based approaches are investigated to achieve the time synchronization needed for localization of the AVs. Finally, a combination of a multilateration (MLAT) method and a Kalman filter is employed to provide an anti-spoofing tracking solution for AVs. We demonstrate the performance advantages of our framework through a dataset collected by a real-world CWN. Our results show that the proposed framework achieves localization accuracy comparable to that acquired using only GPS-synchronized sensors and outperforms the localization accuracy obtained based on state-of-the-art CWN synchronization methods.
Current network access infrastructures are characterized by heterogeneity, low latency, high throughput, and high computational capability, enabling massive concurrent connections and various services. Unfortunately, this design does not pay significant attention to mobile services in underserved areas. In this context, the use of aerial radio access networks (ARANs) is a promising strategy to complement existing terrestrial communication systems. Involving airborne components such as unmanned aerial vehicles, drones, and satellites, ARANs can quickly establish a flexible access infrastructure on demand. ARANs are expected to support the development of seamless mobile communication systems toward a comprehensive sixth-generation (6G) global access infrastructure. This paper provides an overview of recent studies regarding ARANs in the literature. First, we investigate related work to identify areas for further exploration in terms of recent knowledge advancements and analyses. Second, we define the scope and methodology of this study. Then, we describe ARAN architecture and its fundamental features for the development of 6G networks. In particular, we analyze the system model from several perspectives, including transmission propagation, energy consumption, communication latency, and network mobility. Furthermore, we introduce technologies that enable the success of ARAN implementations in terms of energy replenishment, operational management, and data delivery. Subsequently, we discuss application scenarios envisioned for these technologies. Finally, we highlight ongoing research efforts and trends toward 6G ARANs.
This paper describes the principles and implementation results of reinforcement learning algorithms on IoT devices for radio collision mitigation in ISM unlicensed bands. Learning is here used to improve both the IoT network capability to support a larger number of objects as well as the autonomy of IoT devices. We first illustrate the efficiency of the proposed approach in a proof-of-concept based on USRP software radio platforms operating on real radio signals. It shows how collisions with other RF signals present in the ISM band are diminished for a given IoT device. Then we describe the first implementation of learning algorithms on LoRa devices operating in a real LoRaWAN network, that we named IoTligent. The proposed solution adds neither processing overhead so that it can be ran in the IoT devices, nor network overhead so that no change is required to LoRaWAN. Real life experiments have been done in a realistic LoRa network and they show that IoTligent device battery life can be extended by a factor 2 in the scenarios we faced during our experiment.
In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges corresponding to each KET. The unique RM challenges in 6G necessitate the transformation of existing optimization-based solutions to artificial intelligence/machine learning-empowered solutions. In the sequel, we formulate a joint network selection and subchannel allocation problem for 6G multi-band network that provides both further enhanced mobile broadband (FeMBB) and extreme ultra reliable low latency communication (eURLLC) services to the terrestrial and aerial users. Our solution highlights the efficacy of multi-band network and demonstrates the robustness of dueling deep Q-learning in obtaining efficient RM solution with faster convergence rate compared to deep-Q network and double deep Q-network algorithms.
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal multiple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.
With the increasing demand of ultra-high-speed wireless communications and the existing low frequency band (e.g., sub-6GHz) becomes more and more crowded, millimeter-wave (mmWave) with large spectra available is considered as the most promising frequency band for future wireless communications. Since the mmWave suffers a serious path-loss, beamforming techniques shall be adopted to concentrate the transmit power and receive region on a narrow beam for achieving long distance communications. However, the mobility of users will bring frequent beam handoff, which will decrease the quality of experience (QoE). Therefore, efficient beam tracking mechanism should be carefully researched. However, the existing beam tracking mechanisms concentrate on system throughput maximization without considering beam handoff and link robustness. This paper proposes a throughput and robustness guaranteed beam tracking mechanism for mobile mmWave communication systems which takes account of both system throughput and handoff probability. Simulation results show that the proposed throughput and robustness guaranteed beam tracking mechanism can provide better performance than the other beam tracking mechanisms.