Do you want to publish a course? Click here

The Substructures in Disks undergoing Vertical Shear Instability: II. Observational Predictions for the Dust Continuum

116   0   0.0 ( 0 )
 Added by Luca Ricci
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-angular resolution observations at sub-millimeter/millimeter wavelengths of disks surrounding young stars have shown that their morphology is made of azimuthally-symmetric or point-symmetric substructures, in some cases with spiral arms, localized spur- or crescent-shaped features. The majority of theoretical studies with the aim of interpreting the observational results have focused on disk models with planets, under the assumption that the disk substructures are due to the disk-planet interaction. However, so far only in very few cases exoplanets have been detected in these systems. Furthermore, some substructures are expected to appear textit{before} planets form, as they are necessary to drive the concentration of small solids which can lead to the formation of planetesimals. In this work we present observational predictions from high-resolution 3D radiative hydrodynamical models which follow the evolution of gas and solids in a protoplanetary disk. We focus on substructures in the distribution of millimeter-sized and smaller solid particles produced by the vertical shear instability. We show that their characteristics are compatible with some of the shallow gaps detected in recent observations at sub-mm/mm wavelengths, and present predictions for future observations with better sensitivity and angular resolution with ALMA and a Next Generation Very Large Array.



rate research

Read More

The vertical shear instability (VSI) is a robust phenomenon in irradiated protoplanetary disks (PPDs). While there is extensive literature on the VSI in the hydrodynamic limit, PPDs are expected to be magnetized and their extremely low ionization fractions imply that non-ideal magneto-hydrodynamic (MHD) effects should be properly considered. To this end, we present linear analyses of the VSI in magnetized disks with Ohmic resistivity. We primarily consider toroidal magnetic fields, which are likely to dominate the field geometry in PPDs. We perform vertically global and radially local analyses to capture characteristic VSI modes with extended vertical structures. To focus on the effect of magnetism, we use a locally isothermal equation of state. We find that magnetism provides a stabilizing effect to dampen the VSI, with surface modes, rather than body modes, being the first to vanish with increasing magnetization. Subdued VSI modes can be revived by Ohmic resistivity, where sufficient magnetic diffusion overcome magnetic stabilization, and hydrodynamic results are recovered. We also briefly consider poloidal fields to account for the magnetorotational instability (MRI), which may develop towards surface layers in the outer parts of PPDs. The MRI grows efficiently at small radial wavenumbers, in contrast to the VSI. When resistivity is considered, we find the VSI dominates over the MRI for Ohmic Els{a}sser numbers $lesssim 0.09$ at plasma beta parameter $beta_Z sim 10^4$.
The vertical shear instability (VSI) offers a potential hydrodynamic mechanism for angular momentum transport in protoplanetary disks (PPDs). The VSI is driven by a weak vertical gradient in the disks orbital motion, but must overcome vertical buoyancy, a strongly stabilizing influence in cold disks, where heating is dominated by external irradiation. Rapid radiative cooling reduces the effective buoyancy and allows the VSI to operate. We quantify the cooling timescale $t_c$ needed for efficient VSI growth, through a linear analysis of the VSI with cooling in vertically global, radially local disk models. We find the VSI is most vigorous for rapid cooling with $t_c<Omega_mathrm{K}^{-1}h|q|/(gamma -1)$ in terms of the Keplerian orbital frequency, $Omega_mathrm{K}$; the disks aspect-ratio, $hll1$; the radial power-law temperature gradient, $q$; and the adiabatic index, $gamma$. For longer $t_c$, the VSI is much less effective because growth slows and shifts to smaller length scales, which are more prone to viscous or turbulent decay. We apply our results to PPD models where $t_c$ is determined by the opacity of dust grains. We find that the VSI is most effective at intermediate radii, from $sim5$AU to $sim50$AU with a characteristic growth time of $sim30$ local orbital periods. Growth is suppressed by long cooling times both in the opaque inner disk and the optically thin outer disk. Reducing the dust opacity by a factor of 10 increases cooling times enough to quench the VSI at all disk radii. Thus the formation of solid protoplanets, a sink for dust grains, can impede the VSI.
155 - Urs Schafer , Anders Johansen , 2020
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical instability, has so far not been investigated in detail. We study the turbulence that is induced by the streaming instability as well as its interaction with the vertical shear instability. For this purpose, we employ the FLASH Code to conduct two-dimensional axisymmetric global disk simulations spanning radii from $1$ au to $100$ au, including the mutual drag between gas and dust as well as the radial and vertical stellar gravity. If the streaming instability and the vertical shear instability start their growth at the same time, we find the turbulence in the dust mid-plane layer to be primarily driven by the streaming instability. It gives rise to vertical gas motions with a Mach number of up to ${sim}10^{-2}$. The dust scale height is set in a self-regulatory manner to about $1%$ of the gas scale height. In contrast, if the vertical shear instability is allowed to saturate before the dust is introduced into our simulations, then it continues to be the main source of the turbulence in the dust layer. The vertical shear instability induces turbulence with a Mach number of ${sim}10^{-1}$ and thus impedes dust sedimentation. Nonetheless, we find the vertical shear instability and the streaming instability in combination to lead to radial dust concentration in long-lived accumulations which are significantly denser than those formed by the streaming instability alone. Thus, the vertical shear instability may promote planetesimal formation by creating weak overdensities that act as seeds for the streaming instability.
Secular gravitational instability (GI) is one of the promising mechanisms for creating annular substructures and planetesimals in protoplanetary disks. We perform numerical simulations of the secular GI in a radially extended disk with inward drifting dust grains. The results show that, even in the presence of the dust diffusion, the dust rings form via the secular GI while the dust grains are moving inward, and the dust surface density increases by a factor of ten. Once the secular GI develops into a nonlinear regime, the total mass of the resultant rings can be a significant fraction of the dust disk mass. In this way, a large amount of drifting dust grains can be collected in the dusty rings and stored for planetesimal formation. In contrast to the emergence of remarkable dust substructures, the secular GI does not create significant gas substructures. This result indicates that observations of a gas density profile near the disk midplane enable us to distinguish the mechanisms for creating the annular substructures in the observed disks. The resultant rings start decaying once they enter the inner region stable to the secular GI. Since the ring-gap contrast smoothly decreases, it seems possible that the rings are observed even in the stable region. We also discuss the likely outcome of the non-linear growth and indicate the possibility that a significantly developed region of the secular GI may appear as a gap-like substructure in dust continuum emission since dust growth into larger solid bodies and planetesimal formation reduce the total emissivity.
259 - Min-Kai Lin 2016
We quantify the thermodynamic requirement for the Vertical Shear Instability and evaluate its relevance to realistic protoplanetary disks as a potential route to hydrodynamic turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا