Do you want to publish a course? Click here

Secular Gravitational Instability of Drifting Dust in Protoplanetary Disks: Formation of Dusty Rings without Significant Gas Substructures

154   0   0.0 ( 0 )
 Added by Ryosuke Tominaga
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Secular gravitational instability (GI) is one of the promising mechanisms for creating annular substructures and planetesimals in protoplanetary disks. We perform numerical simulations of the secular GI in a radially extended disk with inward drifting dust grains. The results show that, even in the presence of the dust diffusion, the dust rings form via the secular GI while the dust grains are moving inward, and the dust surface density increases by a factor of ten. Once the secular GI develops into a nonlinear regime, the total mass of the resultant rings can be a significant fraction of the dust disk mass. In this way, a large amount of drifting dust grains can be collected in the dusty rings and stored for planetesimal formation. In contrast to the emergence of remarkable dust substructures, the secular GI does not create significant gas substructures. This result indicates that observations of a gas density profile near the disk midplane enable us to distinguish the mechanisms for creating the annular substructures in the observed disks. The resultant rings start decaying once they enter the inner region stable to the secular GI. Since the ring-gap contrast smoothly decreases, it seems possible that the rings are observed even in the stable region. We also discuss the likely outcome of the non-linear growth and indicate the possibility that a significantly developed region of the secular GI may appear as a gap-like substructure in dust continuum emission since dust growth into larger solid bodies and planetesimal formation reduce the total emissivity.



rate research

Read More

Theoretical models of the ionization state in protoplanetary disks suggest the existence of large areas with low ionization and weak coupling between the gas and magnetic fields. In this regime hydrodynamical instabilities may become important. In this work we investigate the gas and dust structure and dynamics for a typical T Tauri system under the influence of the vertical shear instability (VSI). We use global 3D radiation hydrodynamics simulations covering all $360^circ$ of azimuth with embedded particles of 0.1 and 1mm size, evolved for 400 orbits. Stellar irradiation heating is included with opacities for 0.1- to 10-$mu$m-sized dust. Saturated VSI turbulence produces a stress-to-pressure ratio of $alpha simeq 10^{-4}$. The value of $alpha$ is lowest within 30~au of the star, where thermal relaxation is slower relative to the orbital period and approaches the rate below which VSI is cut off. The rise in $alpha$ from 20 to 30~au causes a dip in the surface density near 35~au, leading to Rossby wave instability and the generation of a stationary, long-lived vortex spanning about 4~au in radius and 40~au in azimuth. Our results confirm previous findings that mm size grains are strongly vertically mixed by the VSI. The scale height aspect ratio for 1mm grains is determined to be 0.037, much higher than the value $H/r=0.007$ obtained from millimeter-wave observations of the HL~Tau system. The measured aspect ratio is better fit by non-ideal MHD models. In our VSI turbulence model, the mm grains drift radially inwards and many are trapped and concentrated inside the vortex. The turbulence induces a velocity dispersion of $sim 12$~m/s for the mm grains, indicating that grain-grain collisions could lead to fragmentation.
We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations for three protoplanetary disks in Taurus at 2.9,mm and comparisons with previous 1.3,mm data both at an angular resolution of $sim0.1$ (15,au for the distance of Taurus). In the single-ring disk DS Tau, double-ring disk GO Tau, and multiple-ring disk DL Tau, the same rings are detected at both wavelengths, with radial locations spanning from 50 to 120,au. To quantify the dust emission morphology, the observed visibilities are modeled with a parametric prescription for the radial intensity profile. The disk outer radii, taken as 95% of the total flux encircled in the model intensity profiles, are consistent at both wavelengths for the three disks. Dust evolution models show that dust trapping in local pressure maxima in the outer disk could explain the observed patterns. Dust rings are mostly unresolved. The marginally resolved ring in DS Tau shows a tentatively narrower ring at the longer wavelength, an observational feature expected from efficient dust trapping. The spectral index ($alpha_{rm mm}$) increases outward and exhibits local minima that correspond to the peaks of dust rings, indicative of the changes in grain properties across the disks. The low optical depths ($tausim$0.1--0.2 at 2.9,mm and 0.2--0.4 at 1.3,mm) in the dust rings suggest that grains in the rings may have grown to millimeter sizes. The ubiquitous dust rings in protoplanetary disks modify the overall dynamics and evolution of dust grains, likely paving the way towards the new generation of planet formation.
High spatial resolution observations of protoplanetary disks (PPDs) by ALMA have revealed many details that are providing interesting constraints on the disk physics as well as dust dynamics, both of which are essential for understanding planet formation. We carry out high-resolution, 2D global hydrodynamic simulations, including the effects of dust feedback, to study the stability of dusty rings. When the ring edges are relatively sharp and the dust surface density becomes comparable to the gas surface density, we find that dust feedback enhances the radial gradients of both the azimuthal velocity profile and the potential vorticity profile at the ring edges. This eventually leads to instabilities on meso-scales (spatial scales of several disk scale heights), causing dusty rings to be populated with many compact regions with highly concentrated dust densities on meso-scales. We also produce synthetic dust emission images using our simulation results and discuss the comparison between simulations and observations.
High-angular resolution observations at sub-millimeter/millimeter wavelengths of disks surrounding young stars have shown that their morphology is made of azimuthally-symmetric or point-symmetric substructures, in some cases with spiral arms, localized spur- or crescent-shaped features. The majority of theoretical studies with the aim of interpreting the observational results have focused on disk models with planets, under the assumption that the disk substructures are due to the disk-planet interaction. However, so far only in very few cases exoplanets have been detected in these systems. Furthermore, some substructures are expected to appear textit{before} planets form, as they are necessary to drive the concentration of small solids which can lead to the formation of planetesimals. In this work we present observational predictions from high-resolution 3D radiative hydrodynamical models which follow the evolution of gas and solids in a protoplanetary disk. We focus on substructures in the distribution of millimeter-sized and smaller solid particles produced by the vertical shear instability. We show that their characteristics are compatible with some of the shallow gaps detected in recent observations at sub-mm/mm wavelengths, and present predictions for future observations with better sensitivity and angular resolution with ALMA and a Next Generation Very Large Array.
Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We investigate mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا