Do you want to publish a course? Click here

Cohomology of flag supervarieties and resolutions of determinantal ideals

109   0   0.0 ( 0 )
 Added by Steven Sam
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We study the coherent cohomology of generalized flag supervarieties. Our main observation is that these groups are closely related to the free resolutions of (certain generalizations of) determinantal ideals. In the case of super Grassmannians, we completely compute the cohomology of the structure sheaf: it is composed of the singular cohomology of a Grassmannian and the syzygies of a determinantal variety. The majority of the work involves studying the geometry of an analog of the Grothendieck-Springer resolution associated to the super Grassmannian; this takes place in the world of ordinary (non-super) algebraic geometry. Our work gives a conceptual explanation of the result of Pragacz-Weyman that the syzygies of determinantal ideals admit an action of the general linear supergroup. In a subsequent paper, we will treat other flag supervarieties in detail.

rate research

Read More

We consider a series of four subexceptional representations coming from the third line of the Freudenthal-Tits magic square; using Bourbaki notation, these are fundamental representations $(G,X)$ corresponding to $(C_3, omega_3),, (A_5, omega_3), , (D_6, omega_5)$ and $(E_7, omega_6)$. In each of these four cases, the group $G=Gtimes mathbb{C}^*$ acts on $X$ with five orbits, and many invariants display a uniform behavior, e.g. dimension of orbits, their defining ideals and the character of their coordinate rings as $G$-modules. In this paper, we determine some more subtle invariants and analyze their uniformity within the series. We describe the category of $G$-equivariant coherent $mathcal{D}_X$-modules as the category of representations of a quiver with relations. We construct explicitly the simple $G$-equivariant $mathcal{D}_X$-modules and compute the characters of their underlying $G$-structures. We determine the local cohomology groups with supports given by orbit closures, determining their precise $mathcal{D}_X$-module structure. As a consequence, we calculate the intersection cohomology groups and Lyubeznik numbers of the orbit closures. While our results for the cases $(A_5, omega_3), , (D_6, omega_5)$ and $(E_7, omega_6)$ are still completely uniform, the case $(C_3, omega_3)$ displays a surprisingly different behavior. We give two explanations for this phenomenon: one topological, as the middle orbit of $(C_3, omega_3)$ is not simply-connected; one geometric, as the closure of the orbit is not Gorenstein.
82 - Anton Dochtermann 2017
Given a graph $G$, the $G$-parking function ideal $M_G$ is an artinian monomial ideal in the polynomial ring $S$ with the property that a linear basis for $S/M_G$ is provided by the set of $G$-parking functions. It follows that the dimension of $S/M_G$ is given by the number of spanning trees of $G$, which by the Matrix Tree Theorem is equal to the determinant of the reduced Laplacian of $G$. The ideals $M_G$ and related algebras were introduced by Postnikov and Shapiro where they studied their Hilbert functions and homological properties. The author and Sanyal showed that a minimal resolution of $M_G$ can be constructed from the graphical hyperplane arrangement associated to $G$, providing a combinatorial interpretation of the Betti numbers. Motivated by constructions in the theory of chip-firing on graphs, we study certain `skeleton ideals $M_G^{(k)} subset M_G$ generated by subsets of vertices of $G$ of size at most $k+1$. Here we focus our attention on the case $k=1$, the $1$-skeleton of the $G$-parking functions ideals. We consider standard monomials of $M_G^{(1)}$ and provide a combinatorial interpretation for the dimension of $S/M_G^{(1)}$ in terms of the signless Laplacian for the case $G = K_{n+1}$ is the complete graph. Our main study concerns homological properties of these ideals. We study resolutions of $M_G^{(1)}$ and show that for a certain class of graphs minimal resolution is supported on decompositions of Euclidean space coming from the theory of tropical hyperplane arrangements. This leads to combinatorial interpretations of the Betti numbers of these ideals.
For a local complete intersection subvariety $X=V({mathcal I})$ in ${mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of ${mathbb P}^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t=V({mathcal I^t})$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new ingredient is a version of the Kodaira-Akizuki-Nakano vanishing theorem for $X$, formulated in terms of the cotangent complex.
We develop an analogue of Eisenbud-Floystad-Schreyers Tate resolutions for toric varieties. Our construction, which is given by a noncommutative analogue of a Fourier-Mukai transform, works quite generally and provides a new perspective on the relationship between Tate resolutions and Beilinsons resolution of the diagonal. We also develop a Beilinson-type resolution of the diagonal for toric varieties and use it to generalize Eisenbud-Floystad-Schreyers computationally effective construction of Beilinson monads.
We study standard monomial bases for Richardson varieties inside the flag variety. In general, writing down a standard monomial basis for a Richardson variety can be challenging, as it involves computing so-called defining chains or key tableaux. However, for a certain family of Richardson varieties, indexed by compatible permutations, we provide a very direct and straightforward combinatorial rule for writing down a standard monomial basis. We apply this result to the study of toric degenerations of Richardson varieties. In particular, we provide a new family of toric degenerations of Richardson varieties inside flag varieties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا